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Abstract 

 The computational landscape is dominated by the use of a very high number of CPU 

resources; this has however provided diminishing returns in recent years, pushing for a paradigm 

shift in the choice for computational systems. 

The following work was aimed at determining the maturity of heterogeneous computer 

systems in terms of computational performance and their possible integration within High-

Performance Computing resources through the use of the OpenCL parallel programming 

platform.  

An introduction is given in the existing hardware architectures targeted by the OpenCL 

platform, existing literature regarding the integration of heterogeneous systems for 

computational applications, and the OpenCL platform as a development environment. 

A number of applications are developed to benchmark the capabilities of the framework 

in multi-architecture environments, the results of which show up to 160 times performance gain 

when targeting GPU architectures, as opposed to CPU, for matrix multiplication algorithms. 

Based on this, an extensive test-bench is designed targeting the HTCondor resource pool 

for a Fast-Fourier Transform application. Results from these machines once again showed a 

significant performance increase against CPU systems, while also enabling the expansion of the 

HTCondor system and the uncovering of 30 Teraflops of dormant computing power.  

The FPGA architecture is also investigated for its potential in OpenCL computational 

acceleration, with a focus on the platforms ease of use. It is determined that the framework is 

mature enough for FPGA application development. 
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Chapter 1: Introduction  

 Generally, the world of computing has accessed two methods of manipulating and 

interpreting information; firstly, hard-coded designs in the form of ASICs, where data-paths and 

algorithms are fixed in hardware, resulting in high performance applications that cannot be 

altered after creation, accomplishing only the task they were designed for. And secondly 

programmable systems, (meaning CPUs, and more recently GPUs), where algorithms are 

implemented after production via the use of software, the data path in a programmable system is 

also fixed, however it implements primitive generics so that it may be used in multiple 

algorithms, resulting in a higher degree of reusability at the cost of performance. (Altera, 2007) 

 Fixed implementations like the ASIC are so complex in terms of design and manufacture 

that the user base for such devices is limited to companies that can afford the time and resource 

investment. Also with technology moving forward so fast, the overall production time of such a 

device might end up being longer than the time it takes for new generations of hardware to be 

created, making ASICs a very niche market. Because of this, the majority of applications use 

programmable systems based on CPU architecture. 

 As requirements grow, programmable devices need to improve in order to keep up with 

the computational demands of users. This is done, generally through three different trends. The 

first of these trends is the frequency scaling of said systems. However, higher frequencies require 

higher voltage, making it more difficult to increase frequency without also increasing power 

consumption. This issue is known as the “power wall” and it refers to the point where increasing 

frequency would require so much more power that it becomes impractical. (Schaller, 1997) 
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It can be observed in Figure 1 that CPU clock frequency has not seen any major improvements 

since 2004, and had actually dropped when vendors decided to embrace multi-core architectures. 

 

Figure 1: CPU Frequency Evolution (GHz) 

A second trend involved reducing the size of transistors in programmable systems, thus 

increasing the amount of components fitted on the same amount of space. This trend is governed 

by Moore’s Law, an observation stating that the number of transistors in an IC doubles 

approximately every two years. The observation has stood the test of time since 1975; however 

the development pace of this trend is also diminishing, with smaller sized transistors taking 

increasingly more time to develop. Also, this trend is reaching its physical limits, with current 

technologies offering 14nm chips. The expected end-date of Moore’s Law is set for 2025. 
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Figure 2: Intel CPU Architecture Size Evolution (Intel) 

Taken together, the above two are closely related in limiting CPU frequency, since 

cooling capabilities are not scaling at a fast enough rate to allow for the maintaining of high 

frequencies in more dense systems. This has led to a stagnation, and even decrease, in CPU 

frequency during the last decade.  

The third trend used to improve performance relied on the development of more complex 

hardware, capable of converting the sequential logic of programming into instruction-level 

parallelism. Also, because, in software programming, the memory latency of programs is not 

considered, this task falls on hardware once again, meaning that larger chunks of hardware must 

be dedicated to managing memory, and extracting parallelism from the code. Over time, the 

improvements to hardware in programmable systems have seen diminishing returns. (Schaller, 

1997) 

One attempt to avoid the issues described above was the emergence of Multi-Core 

processing which involves utilizing more compute units running at slower clock speeds and 

parallelising the process as to exploit multiple nodes at the same time. To offer an example, the 
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Intel Pentium 570J of 2004 offered a max clock speed of 3.8 GHz and a single core, and the 

current generation Intel i7-6700k offers a max clock speed of 4.2 GHz with four cores. 

Since the benefits of following the three aforementioned trends are diminishing, emphasis 

is shifted towards creating parallelism at code level instead of relying on hardware to extract it at 

instruction-level. This means that the developer is tasked with defining parallelism and that the 

hardware can focus more on the computation and less on interpretation. (Garland & al., 2008) 

1.1  Heterogeneous Computing 

 Any system that uses more than one processor type to handle computational requirement 

is referred to as a heterogeneous system. The addition of specialized coprocessor to accelerate 

specific computational tasks as opposed to simply increasing the number of processors is the 

“definition” of heterogeneous computing. (Kalinov, Lastovetsky, & Robert, 2005) 

 Heterogeneous systems have found their way into every corner of everyday life, with the 

CPU-GPU combination being the most common. These are today found in the most so-called 

“smart” devices, such as phones, tablets or watches. And although devices such as these were not 

designed with the intent to benefit computing, recent work by the Mont-Blanc project has shown 

that embedded and mobile devices can be used to power a fully functional supercomputer, with 

the aim of creating a supercomputing environment that is more energy efficient. (Perez, Bosque, 

Stafford, & Beivide, 2016) 
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1.2  The OpenCL heterogeneous framework 

 OpenCL is a development framework that is platform-independent and emphasises 

parallel computing. This framework is compatible with many platforms, with commercial 

suppliers such as Intel, NVidia, and AMD all offering support for OpenCL on their hardware.  

OpenCL is a programming language derived from ISO C99 that adds API in order to 

extract parallelism from an otherwise serial programming language. This allows OpenCL to 

expand the number of applications that can run on an FPGA, and opening it up to a variety of 

programmers that had no way of using it before. (Stone, Gohara, & Shi, 2010) 

 

Figure 3: Host and Various Accelerators (CMSoft) 

The standard use model for OpenCL is split in two parts: 
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The Host code; a sequential C code written with OpenCL API required to communicate 

with the chosen platform. This code is compiled into an executable that gets ran on the host 

CPU, and is responsible for controlling the entire system, from start to finish. 

 The Kernels; each function ran on the platform is written as a kernel, using OpenCL 

syntax. This then gets compiled using the SDK offered by the manufacturer of the platform, 

generating a second executable. The kernel executable is used by the host to programme the 

platform during run-time.   

1.3  Reconfigurable Computing 

The term reconfigurable computing refers to the act of performing computations via the 

use of spatially (field) programmable architectures such as FPGAs. This merges a multitude of 

disciplines, including hardware design, digital signal processing, computer aided design, and 

sequential and parallel computing. Over the past 25 years, a community dedicated to building 

and programming these new systems has emerged, and the foundation for large scale 

reconfigurable computing is being laid. 

The FPGA became an attractive solution in the computing world because dedicated 

hardware was always much faster than its software counterpart. However due to the high design 

cost and development time of ASIC solutions made it viable only for a select few. Moore's Law 

also meant that in some cases a faster microprocessor was created before the hard-coded solution 

meant to outperform it was implemented.  FPGAs offered similar hardware specific 

computational speeds without the development and manufacturing costs or lead times of 

traditional ASIC solutions. (Tessier, Pocek, & DeHon, 2015) 
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Figure 4: FPGA Basic Outline (Mazsola) 

While the FPGA, through its massive parallel computation capabilities, flexibility, and 

low energy consumption, provides opportunities for computational acceleration, it also comes 

with an exponential increase in development time.  CPUs and GPUs are programmed using high-

level languages, C and CUDA as an example, which lowers the development time. In contrast, 

FPGA are programmed in HDL, which in software development terms, is similar to the 

Assembler language, a low-level language that makes development more time-consuming. 

FPGA developers also need to take into account hardware design, RTL programming and timing 

optimisations. This, in turn, requires domain experience for optimal design and implementation.  

 In order to alleviate some of the barriers that prevent FPGA based computing to take root 

multiple tools have been developed to reduce development time by allowing users to write code 

in high-level languages, such as C or Java, and having it converted into HDL. 

It has been shown that FPGAs offer similar computational power to GPUs in regards to 

optical flow algorithms, however the development time of such applications is 12 times slower 

on the FPGA than it is on a GPU.  The difference in development time was attributed to the 
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complexity of hardware design and simulation which use the process of “edit/compile/simulate 

followed by edit/synthesize/place-and-route/execute” as opposed to the software development 

which requires only an “edit/compile/execute” process. However, taking into account the lower 

power consumption of the FPGA and its higher affinity to parallelism, it can be assumed that 

FPGAs have the ability to perform better than GPUs, however the trade-off in development time 

make it a more situational solution. As such, the introduction of OpenCL development could 

bring down the development time of such applications. (Bodily, Nelson, Wei, Lee, & Chase, A 

Comparison Study on Implementing Optical Flow and Digital Communications on FPGAs and 

GPUs, 2010) 

 In recent years, interest has changed from using HDL to HLS, standing for High-Level 

Synthesis, an approach to producing logic circuits that avoids using HDL when possible. This 

means that HLS tools convert a software based design to a circuit made up of control logic and 

data path. Parallelism in HLS is achieved through scheduling; multiple instructions are 

performed during the same clock cycle. This, however, is not the best approach when using 

FPGAs. These devices benefit a lot from their ability to manage pipelined applications, however 

current programming languages, like C, are unable to express pipelining and as such, the full 

potential of the FPGA is not unlocked. Also, HLS is not traditionally used to create an entire 

system, only small parts of it; this means that the need for a competent HDL developer is not 

bypassed.  
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Figure 5: C to RTL Converter Using HLS (Aldec) 

 OpenCL addresses most of the issues posed by HLS by using a host connected to 

multiple kernels. Each kernel runs independently of the other and the host manages 

communications.  The host part of the system sets up the data to be processed and runs threads 

on a kernel. Threads are executed by “…reading arguments, loading data from global memory, 

processing it, and storing the results in global memory.” By controlling the OpenCL application 

through the host file, the designer is able to avoid going into hardware design, removing the need 

for experience in that domain and allowing for faster development times. 

 A recent work by Altera Corporation showed that OpenCL based implementations 

provided comparable if not better results than the HDL-coded alternatives, with much lower 

development times. This suggests that OpenCL could allow for the development of high-quality 

computational solutions based on FPGAs much faster than traditional methods. (Altera, 2011) 
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1.4  Methodology 

To determine the efficiency of heterogeneous computing, using an OpenCL based 

programming model, several test-benches will be designed. These will be based on algorithms or 

compute-heavy tasks that can benefit from the increased native parallelism available in 

heterogeneous systems. Systems, such as these, would allow for the breakdown of operations 

between resources in order to maximise performance, for example, assigning serial tasks to 

CPUs and parallel tasks to GPUs. 

These implementations will then be compared with computing solutions offered on the 

existing systems, which utilise CPU based computation, in order to determine whether 

heterogeneous computing provides a speed-up factor worthy of consideration. Comparison will 

not be made solely on runtime speed-up but also on development time, development complexity 

and power-usage.  

An attempt will be made to improve the performance of the High Throughput Computing 

environment at the University of Huddersfield by taking advantage of the readily available 

General-Purpose GPUs in the HTCondor pool. This diverse ecosystem spans multiple computer 

architectures, various operating systems, and a significant variation of compute units, varying 

from low end CPUs to high-end GPGPUs. Currently, the university exploits the idle CPU time of 

available machines by assigning them computational tasks, however the GPU resources in these 

systems are unused. No configuration exists to allow for the allocation of tasks to the GPU 

component of available computers, and as such their capabilities are wasted during their idle 

periods.  
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With OpenCL being a platform independent tool, a single implementation is developed to 

exploit the entire heterogeneous system pool, and HTCondor offers a means to access it. While 

performance is not inherently sought after in HTC, the ability to accelerate computing without 

requiring hardware changes, or physical intervention, is still desirable and increases the CPU 

hours generated by the system. It also enables researchers to use more complex applications that 

are would normally be too time-consuming when ran on CPUs alone. 

A third study will investigate the use of OpenCL for developing FPGA applications 

aimed at computational applications. The aim is to determine the efficiency of OpenCL design as 

opposed to traditional HDL design in terms of development time, difficulty of porting 

applications from CPU to FPGA, and the speed-up obtained when using reconfigurable 

computing. 

1.5  Research Questions: 

 Does heterogeneous computing provide enough benefits to warrant a change from 

traditional systems? 

 Is the OpenCL heterogeneous platform mature enough to encourage a shift in 

development environment used for High-Performance Computing? 

 Can FPGAs be used to accelerate computing using the OpenCL platform? 
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The remainder of this thesis is structured as follows. Chapter II offers insight into the 

different architectures types that can be exploited for computing purposes, and a review of 

existing work done in this area. Chapter III introduces the OpenCL platform with a focus on the 

programming model and usage. Chapter IV covers the implementation of an OpenCL benchmark 

for use across CPUs and GPUs, with a detailed design process and resulting performance. 

Chapter V covers the implementation of a different OpenCL benchmark, over a HPC resource 

composed of hundreds of machines. Chapter VI presents the FPGA related benchmark design 

and execution, while also discussing the SDK offered by the manufacturer. Chapter VII 

discusses further research topics in this subject area. Chapter VIII represents the conclusion of 

this thesis.  
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Chapter 2: Literature Review 

 As introduced above, heterogeneous computing refers to the use of multiple types of 

processors to accelerate the execution of computations within a system. The following pages will 

detail some of the existing accelerators used in conjunction with CPUs to improve performance. 

2.1  Many-Core Architectures 

 Due to the recent improvements in CPU architectures, the distinct line separating GPUs 

from CPUs is becoming increasingly blurred. It is due to the emergence of Many-Core 

architectures that previous boundaries need to be re-evaluated.  Many-Core architectures are 

systems which contain multiple CPU cores within a singular unit, allowing for heavier 

parallelism at CPU level. This is different from simply connecting multiple CPUs together since 

it offers much faster memory transfer speeds, and more complex optimisations for parallel 

execution, at the expense of individual thread performance, and it is in this aspect that Many-

Core architectures are similar to GPUs.  

 

Figure 6: Many-Core Processor architecture (Embedded.com) 
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 One such system is the Intel Xeon Phi, a coprocessor unit comprised of up to 72 

specialized CPU cores that can be connected to a computer via a PCI-E bus. The Xeon Phi 

functions, from a programming perspective, as a CPU. It is fully compatible with existing CPU 

applications that exploit parallelism. The goal of these sorts of architectures is to offer GPU level 

parallel performance without the inherent drawbacks of GPU based computational design and 

programming, or the bottlenecks generated by off-chip data transfers. 23 of the top 500 

supercomputers are based on the Xeon Phi architecture, including the former number one 

supercomputer Tianhe-2, the current fastest supercomputer; Sunway TaihuLight also uses many-

core processors with 260 cores per unit. (Top500, 2016) 

2.2  Graphical Processing Units 

 The Graphical Processing Unit (GPU) is a specialized IC designed for rapid manipulation 

of data, primarily used in computer graphics and image processing. The GPU, as architecture, 

contains large amounts of parallel processors, which, while unable to match the frequency of a 

CPU processor, have demonstrated superiority in tasks that involve parallelism, be it data or task 

parallelism. However, among the major drawbacks of using GPU accelerators are, the difficulty 

of programming parallel based applications with fundamentally different approaches to solving, 

and, on a hardware level, the bottleneck resulting from the need to communicate with a host 

CPU, that results in abysmal performance when there is limited data to be computed. (Owens, 

2008) 

 A GPU processor is specialized in the sense that it is designed with the following 

considerations in mind: 
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1. Computational requirements are extensive; 

2. Operations are massively parallel; 

3. Latency is not as important as throughput; 

 

Figure 7: CPU - GPU Core Count 

 Constant advances in hardware and programming API’s for GPUs have led to an 

explosion of GPU based computations, with 66 of the top 500 supercomputers being fitted with 

GPU accelerators. (Top500, 2016) 

2.3  Field-Programmable Gate Arrays 

These devices present a combination of the hardware efficiency found in hard-coded 

designs and the re-configurability of programmable systems. Initially developed for replacing 

multiple transistor-transistor logic devices with a single device, the FPGA was used in 

connecting a micro-controller to peripherals, interfacing devices, or managing memory banks. It 
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was designed as a low-cost prototyping solution, and as such was not considered for 

computational acceleration. Following the fall in transistor costs, and with it the increase in 

FPGA power, these devices gained ground in the field of verification, rapid prototyping and also 

low-volume production where ASIC solutions were deemed impractical. 

 The ever-growing costs of designing and masking ASICs have led to a higher demand for 

FPGA solutions, increasing, in turn the interest in developing faster and stronger FPGAs. 

(Altera, 2007) 

2.4  Existing Applications 

2.4.1  Radar Processing: FPGAs or GPUs? 

 A white paper by the ALTERA Corporation that discusses the efficiency of FPGA usage 

in floating-point operations with regards to their usage in radar systems. The reasoning behind 

this investigation is that CPUs are unable to keep up the pace with current generation processing 

requirements, and as such are the significant bottleneck in such systems. (Altera, 2013) 

The idea of peak FLOP (Floating-Point Operations per Second) as a measure of 

performance is discussed and dismissed since it represents an indication of the theoretical 

maximum capability of the device rather than the actual performance in real-world applications.  

The article then moves on to show that FPGAs are capable of outperforming GPUs when 

working with small sized algorithms. One given example is the Fast Fourier Transform (FFT), 

which in radar systems oscillates in length between 512 and 8,192, in general. In this case GPU 

solutions are ineffective due to overhead and power usage, with FPGAs offering similar 

computational speeds. The paper stats that GPUs become efficient solutions for FFTs that are 
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“[…] several hundred thousand points […]” in length. Based on this, the paper proposes 

benchmarking solutions based on typical applications. 

Following several algorithm based benchmarks, it is concluded that FPGAs can provide 

lower latency and higher performance than processors; however the advantage of using FPGAs 

is expected to increase dramatically with the introduction of HPC-optimized FPGAs. 

2.4.2  A Comparison Study on Implementing Optical Flow and Digital 

Communications on FPGAs and GPUs 

 A study made in (2010) set out to determine the performance of both FPGAs and GPUs 

in signal, and image processing applications. The article studies raw performance as well as 

design and development effort for both platforms. (Bodily, Nelson, Wei, Lee, & Chase, A 

comparison study on implementing optical flow and digital communications on FPGAs and 

GPUs, 2010) 

 Implementation of the FPGA system was done using a number of readily available IP 

cores, which limited the system clock rate, and resulted in raw performance approximately 4 

times slower than the GPU solution while also having a much higher development effort. The 

paper also introduces design enhancements for the FPGA that would, in theory, bring the 

computational performance to values similar to those generated by the GPU. 

 The study found that while the GPU solution consumed around 200-300W of power, the 

FPGA consumption bordered on 10W. This allows for FPGAs to be implemented in embedded 

systems applications where power constraints exist. In terms of speed, the GPU outperformed the 
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FPGA, however it required large data block sizes to do so, this in term generated large latency 

issues that aren’t encountered in the FPGA implementation. 

 The development time was approximated to by 12 times higher for the FPGA than the 

GPU, due to the difficult nature of debugging HDL based applications. 

2.4.3  Performance Comparison of GPU, DSP and FPGA implementations 

of image processing and computer vision algorithms in embedded 

systems 

 A master’s thesis from 2013 studied the implementation of template matching on both 

FPGAs and GPUs for use in embedded, real-time systems. (Fykse, 2013) 

 Template matching is a process that requires multiple scans of the same image, for 

different sizes and orientations of the sought object. For this reason the only viable solutions for 

real-time applications are GPUs and FPGAs, due to their inherent parallelism.  

 The author chose to implement the solution from scratch on the FPGA and by using an 

open-source model for the GPU. Details are given on all steps of the design process, and FPGA 

testing is done in software, through the use of test-benching, with accuracy determined via 

comparison with a MATHLAB implementation.  For the GPU implementation the OpenCV 

library is used, allowing for fast and straightforward implementation of the desired system. 

 When compared, from a development effort stand point, the author debates that even with 

the use of Intellectual Property and HLS, the FPGA development is a lot more complicated than 

the GPU one. There is mention of OpenCL as a means of facilitating GPU implementations 

(however, due to the “age” of the paper, OpenCL is not considered for FPGA implementation). 
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In regards to power consumption, the FPGA far outclasses the GPU, however the FPGA 

consumption is based on software approximation as hardware testing was not done. Finally, as a 

pure performance comparison, the GPU performs slightly better than the FPGA at all but the 

smallest of implementations. The thesis concludes that when faced with real-world projects the 

higher performance of the GPU must be weighed against the lower power consumption of the 

FPGA. 

2.4.4  Accelerating High-Performance Computing With FPGAs 

 Published in 2007, this white paper by Altera presents the improvements offered by 

FPGAs as coprocessors in multiple High-Performance Computing applications. The introduction 

shows that HPC requirements are increasing at a much faster rate than processors, creating a 

technology gap. With Moore’s Law being outpaced by HPC requirements, the need for 

specialized coprocessors was introduced. (Altera, 2007) 

 From a business perspective, higher performance means higher profits (from lower time 

to market, for example), and as such the need for performance that exceeds Moore’s Law is 

understandable. As processor performance increase is slowing down, and development becomes 

cost and energy inefficient, application-specific processors are introduced. Ethernet controllers, 

Graphical processing units and Digital Signal Processors are a few of these solutions; however 

they are not the answer to the technology gap introduced above, since they only address a single 

aspect of the problem.  
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 The ideal coprocessor is proposed as providing “specific hardware acceleration for key 

processes within the application”, being scalable in performance to keep up with demand and 

having high-bandwidth, low-latency interfacing to the main processor and system memory. 

 Apart from these, the paper introduces what it calls the” “four Ps” of HPC market needs: 

performance, productivity, power, and price.” In short, performance refers to the acceleration of 

the whole system, productivity refers to the ease of configuring the system to run existing 

software, power refers to the consumption of such systems, which is generally linked to either 

utilized space or dissipated heat; and finally price, which requires no explanation. 

 As HPC is shifting away from Massively Parallel Processing toward cluster computing, 

the coprocessor design needs to be easily integrated into commodity standard architectures “with 

a cost similar to adding another node in the cluster.” 

 The FPGA is introduced as a solution that satisfies all “four Ps” of HPC needs.  

Examples are given of FPGA performance increase of standard CPU architectures ranging from 

10x to 360x. From a productivity perspective, compilers that convert C to HDL are introduced, 

thus removing the need for a user to have prior experience with FPGAs in order to use them.  For 

power, the inherent parallelism of FPGAs allow them to greatly reduce operating time compared 

to sequential systems, resulting in higher performance at slower clocks, in turn resulting in lower 

power consumption. The final “P”, price is also covered by the FPGA which has a cost 

comparable to a CPU of similar specifications. 
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2.4.5  OpenCL: A Parallel Programming Standard for Heterogeneous 

Computing Systems 

 Published in 2010 this work is a very thorough introduction to the OpenCL framework, 

covering the reasoning behind its development, its predecessors and describing the functionality 

of the platform. (Stone, Gohara, & Shi, 2010) 

 The shift toward heterogeneous computing created a need for software development 

frameworks in the form of parallel programming languages and libraries. Several toolkits were 

developed targeting multi-core processors and GPUs, namely, OpenMP, CUDA, and others. 

OpenCL is described as an industry standard for parallel computing targeting heterogeneous 

systems that, unlike its predecessors, targets a vast majority of hardware devices, and offers a 

unified environment for development.  

 The paper describes the OpenCL programming model, device management, development 

facilitating features of the framework, and memory related aspects of programming. OpenCL is 

described as targeting architectures that have, up to this point, been poorly supported by vendors 

in terms of programming tools or libraries. Among the targeted architectures of OpenCL, this 

work enumerates and expands on multi-core CPUs, GPUs and the IBM Cell processor.  

 The work offers an in-depth description into the implementation of an application used in 

bio-molecular science, presenting the different speed-up capabilities of the aforementioned 

architectures.   
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2.4.6  A Comprehensive Performance Comparison of CUDA and OpenCL 

 This 2011 conference paper investigates the performance of both CUDA and OpenCL 

programming platforms for GPU execution of highly parallel algorithms. This work sets out to 

determine if using OpenCL sacrifices performance for portability, and if so, identify the trade-

offs of using OpenCL as opposed to CUDA. (Fang, Varbanescu, & Sips, 2011) 

 The work focuses on investigating the performance of CUDA and OpenCL applications 

for 16 different applications from three different benchmark suites. The tests run initially in this 

work reveal that CUDA outperforms OpenCL in almost all applications by a margin of up to 

30%. However, this is due to the lack of optimizations in the OpenCL applications and the much 

more mature complier in CUDA.  

 It is further shown that when developing an application in OpenCL rather than porting it 

from CUDA, equivalent performance is achieved. OpenCL portability is also investigated with 

the use of an AMD GPU, an Intel CPU and a Cell/BE accelerator. This revealed that GPU 

performance remains equivalent when porting but CPUs are limited by the small number of 

available compute cores and accelerators are not mature enough to support most memory 

requirements. 

 The paper proposes the creation of an automated application for optimizing OpenCL 

applications to different hardware devices and platforms.  

2.5  Conclusion 

 It is inferred, based on investigated literature, that no single device, or architecture, is 

able to outperform the rest in every single aspect of computation, that there is no single fastest 
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device or fastest architecture. These two titles are highly dependent on the task at hand. As such, 

it is proposed, that rather than being based on a single device, or architecture, a system able to 

claim the title of fastest computational engine would be comprised of multiple devices and 

architecture types. It is for this reason that OpenCL, which promises a platform independent 

framework, for developing applications targeting heterogeneous systems, was selected as the 

development environment for this work.  
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Chapter 3: The OpenCL Platform  

 The Open Computing Language framework is a standard that offers a common 

environment for developing and executing programs on heterogeneous systems, composed of 

diverse computational devices, such as CPUs, GPUs, FPGAs, and DSPs. OpenCL was initially 

developed by Apple, together with other large companies like AMD, IBM, NVIDIA, and Intel, 

which together formed the Khronos Group. The first public release of the OpenCL standard was 

in 2009 with OpenCL 1. (Stone, Gohara, & Shi, 2010) 

 OpenCL provides a set of abstractions and programming APIs designed to allow a 

developer to easily access multiple hardware architectures and devices. The framework defines 

both a core set of features available to all compliant devices, such as memory management, 

target device identification, data transfers, or execution queuing, and a more complex extension 

mechanism that allows device vendors to expose features unique to individual devices, add 

additional interfaces, or provide device specific optimizations. In doing this, OpenCL allows 

users to efficiently port applications between different architectures, without losses in features or 

accuracy. 

 The framework can be used to exploit heterogeneous systems by allowing a user to match 

execution segments to the computational hardware architecture most suited to carry them out. It 

is up to the developer to decide how to divide the application between the various available 

compute architectures in order to maximize performance.  
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3.1  Programming Model 

 Since OpenCL is a platform-independent programming environment, OpenCL based 

applications will run on compliant system regardless of available hardware. However, it is up the 

developer to provision the application in such a way that it will execute on multiple device 

architectures. For example, an application targeting GPU execution will fail to start unless a 

GPU device is found within the system. As such, the user is expected to design the application 

with regards to the system it will be executed on. However, this is not the only solution, as the 

user is also able to design the application with features that allow for device selection, or that 

prioritize execution on available accelerators. (Stone, Gohara, & Shi, 2010) 

In terms of design, the user is expected to define the targeted computational devices, 

memory allocations, data management and others within the control segment of the application, 

namely the host file. The flow of operations during both design and execution can be divided 

into 5 distinct sections, as evidenced below.  
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Figure 8: OpenCL Programming Flow 

3.1.1  Environment Setup 

• Identifying a platform; 

A platform is composed of a single host and one or more OpenCL compliant devices. A 

single computer may have multiple platforms, generally sharing the same host (unless multiple 

CPUs are available), with each platform being linked to a different OpenCL implementation. 
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• Select device; 

The device is the component that will run computation; multiple types can be called 

(CPUs, GPUs, FPGAs, or other accelerators). With the inherent heterogeneity of OpenCL, a 

variety of devices may be available at runtime. The application can be designed with a specific 

architecture in mind, or setup in a way that allows the host to pick which of the available 

architectures is the fastest.  

3.1.2  Host Initialization 

• Create Context; 

The OpenCL context, created based on selected platform and devices, manages the 

objects and resources available to the environment, where objects are allocations that enable 

communication between the host and the compute devices, and allow for management of 

memory, command queues, objects and execution. A context may contain one or more devices of 

the same platform. 

• Create command queue; 

The command queue is the means through which the host sends commands to the device, 

with each device requiring its own command queue. Commands include device memory 

allocations, data transfers, kernel executions, and profiling. Commands are queued in the order 

that they are coded in the program but can be executed out-of-order by flagging them for 

asynchronous execution.  
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• Create memory objects; 

Memory objects are blocks of OpenCL data that can be transferred between host and 

device. A kernel executing on a device is only able to access data stored within the memory of 

said device, for this reason the device needs to allocate memory to an object where this data can 

be stored. Memory allocations can only be created and managed by the host. A memory object, 

thus, allows the host to access a chuck of memory on the device. 

3.1.3  Kernel Setup 

• Read kernel file; 

The code executed on the computational device is contained as a separate entity, written 

in a manner that exploits parallelism, using OpenCL specific functions. The host executes this 

kernel and as such must first read it into memory, and where needed, compile the kernel for 

device execution. There are multiple ways to pass a kernel file to the host, such as reading it in 

from an external file or reading in a precompiled binary. 

• Create program object; 

The program object contains the source or binary for the kernels, a built executable, along 

with the information required to compile the executable at run time, and the list of devices 

compatible with the program. Program objects may be created with precompiled kernel binaries 

or with source codes. Precompiled kernels allow for much faster runtime setup however it limits 

cross-device compatibility.  
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• Compile kernel; 

This optional step creates a binary file for the program object from the source code at 

runtime, where the precompiled binaries have not been provided within the application, while 

reducing setup time for execution, this allows an application to target multiple devices without 

impacting program size or development time. 

• Create kernel object; 

Based on the program object, a kernel object is instantiated, each containing a kernel 

function and the argument values used in said function. 

3.1.4  Execution 

• Set kernel arguments; 

As the name suggests, this step handles the arguments passed to the kernels, for examples 

this could be memory size limits, and pointers to the values used in the function. This is done 

since the host must handle all calls, queues, and executions. 

• Execute kernel (Enqueue task); 

In order to execute a kernel on the compute device, it needs to be queued in the command 

queue, and as mentioned before, this can be done either synchronously, in which case commands 

are executed in order or asynchronously, where commands are executed independently of one-

another. 
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• Read memory object; 

After execution, data from the device memory object must be read back into the host. 

This can be synchronous (kernel execution is stopped during data transfer) or asynchronous 

(device keeps computing while data is being transferred). 

3.1.5  Clean-up 

• Free objects; 

After all kernels are executed, the host must free the memory objects it has created, or 

risk crashing the application once device memory has been filled. 

3.2  On-going Improvements 

OpenCL 2.0 has recently introduced major improvements to the standard. As the 

environment matures, more and more features are added to the APIs. In newer releases of the 

OpenCL standard, a couple of features stand out due to the improvements they bring to not only 

the capabilities of the application, but also the reduction of design complexity. 

3.2.1  Shared Virtual Memory 

The first of two major improvements brought forth in OpenCL 2.0 is the addition of 

shared virtual memory. Before its existence, the user had to manage host memory, device 

memory and communication between the two; this took up a lot of time in design and space in 

programming. (AMD, 2014) 
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With the introduction of shared virtual memory, this management is no longer required, 

there is no need to track buffers and copy information from one point to the other. Shared 

pointers have been introduced to fix this exact issue. 

OpenCL 2.0 introduces two different types of shared memory: Coarse-grain SVM and Fine-grain 

SVM. 

These two types are differentiated by the synchronization points used in updating the 

buffers, with coarse-grain being updated when the buffers are called, when the kernel is 

launched, and when it finishes its operation, and fine-grain including the same synchronization 

points but also at atomic operations. Atomic operations are those operations that are completed 

in a single time step, relative to other operations, meaning that no other thread can observe an 

atomic operations execution. The operation is thus indivisible and irreducible, so it can appear to 

the system as if happening instantaneously.   

Coarse-grain only offers a small benefit to programming as it removes the need for 

individual calls to buffers, but the real improvement can be seen in the (not yet hardware 

supported) fine-grain SVM, because using this system, buffer mapping/unmapping is no longer 

required and since buffers update more often, the system can be altered to use data prior to a 

kernel finishing its main operation. 

3.2.2  Device Kernel Enqueue 

With OpenCL 2.0 the device is now able to enqueue kernels, without having to 

communicate with the host programme. Together with the pipe system, which allows for kernels 

to exchange data between them, the system will be able to run at much faster speeds, effectively 
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removing the current bottlenecks constituted by device-host communication speeds. (AMD, 

2014) 

With kernels given to ability to create new kernels without the use of the host 

programme, new possibilities arise, where an algorithm can adapt itself without having to 

transfer data back and forth with the host, limiting device to host communication, one of the 

main bottlenecks in such a system, to a minimum.  One such example is found in networking, 

where GPUs and FPGAs can be used for much faster network encryption/decryption. The 

accelerator is able to manage data inputs and outputs, without relying on the host CPU. 

3.2.3  Standard Portable Intermediate Representation (SPIR-V) 

 SPIR-V is a standard developed by Khronos, the developers of OpenCL, to facilitate 

application portability and performance. It is a programming language environment, situated 

between high-level and low-level languages, which allows for the development of standardized 

applications for OpenCL drivers. This removes the need to integrate high-level language 

compilers into device drivers, reducing driver complexity, and improves portability across 

multiple hardware implementations. (Khronos Group, 2016) 

 SPIR-V is an attempt to remove the need to precompile binaries for each individual 

hardware device, leading to a much faster runtime compilation and a smaller development effort. 
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3.3  Conclusion 

 The use of familiar programming languages and the massive amount of targeted 

platforms of the OpenCL framework make it a promising solution for developing heterogeneous 

applications, with a much shorted development cycle and an increased resilience to aging. The 

ability to easily alter an application so that it targets a different architecture, the ability to 

increase performance “under-the-hood” via vendor specific optimizations, and the ability to 

expose features unique to individual devices offer any application developed with the OpenCL 

framework a much longer lifespan. This also allows for a much faster adoption of newer 

hardware architectures, without the need to shift to a different development framework, learn a 

new programming language, and redevelop the application. 
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Chapter 4: OpenCL Multi-Architecture Application Development 

 This chapter introduces the utilized test-bench applications developed for testing the 

efficiency of the OpenCL platform on various workstations containing CPUs and GPUs. The 

goal was to utilize applications which could operate on different device platforms with minimal 

changes, and without device specific optimizations, in order to reveal baseline performance, or 

rather, the worst expected performance of the given systems.  

 These applications were developed on a Windows based machine using Visual Studio 

2013 and the AMD APP SDK version 2.9, chosen based on the specifications of the 

development machine, although, the choice of development environment did not affect the 

design of the applications since no device specific optimizations were desired. Applications 

targeted both the CPU and GPU architecture either in the same package or as separate 

instantiations of the same application.  

 In order to test the usability, efficiency and heterogeneity of the OpenCL framework, a 

benchmarking system was designed based on applications that could exploit the use of massively 

parallel hardware architectures offered by specialized architectures.  

 CPU execution was aimed at providing a comparison baseline for all further testing. GPU 

execution, aimed at both AMD and NVIDIA devices was chosen because the GPU is the most 

widely available accelerator available.  The FPGA was chosen as the second targeted accelerator 

architecture for OpenCL execution in order to assess both the effectiveness of FPGA based 

computing for engineering applications and the duration and complexity of OpenCL based 

designs targeting the FPGA architecture; however this is covered in a separate chapter. 
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4.1  OpenCL System Detection 

 An application was designed to poll the system for compliant OpenCL devices and list 

their respective features, including core count, clock speed, and maximum memory allocation 

size. This application lacks OpenCL device specific functionality and thus can report if a system 

has OpenCL drivers installed or nor and following that what OpenCL devices are identified.  

 By using this setup it can easily be determined if a system is able to run OpenCL 

applications or not, and if not, whether the issue is related to available hardware or missing 

software drivers.  

 

Figure 9: Excerpt of Device Detection Application 

 As see in Figure 9 the application reads all OpenCL platforms, and for each, queries 

every available device for information. Memory sizes for buffers holding output data are 

calculated right before data acquisition. This is because the number of platforms and devices is 

unknown at the design stage and as such pre-allocating memory becomes difficult. The 

CL_DEVICE_TYPE_ALL parameter ensures that all OpenCL compliant devices are called, and 

can be altered so that the application only reports CPU, or GPU, or accelerator devices. 
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Figure 10: Device Report for Development PC 

 The application was designed in two variations, regular and basic output. The regular 

output reported the most important features of the scanned devices, information that is helpful in 

determining the performance of the device and certain design parameters, such as maximum 

workgroup size or memory allocations. 

 The basic output variation of the application simply returns the device name and compiler 

version, and is designed to be executed in conjunction with the other applications, to identify the 

targeted device.  

4.2  Application Design 

This application used a basic, non-optimized matrix multiplication operation using two 

same-sized matrixes populated with random data at runtime, and reported execution time using 

OpenCL profiling tools by measuring duration between start of computation until end of data 

transfer from compute device to host. This is done to account for the communication overhead 
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generated by different workgroup sizes, and delays in transfer caused by slower bus speeds for 

GPU to CPU communication. 

Multiple matrix sizes were employed, ranging from 2^8 up to 2^12, on multiple 

workgroup sizes, namely 64, 256, and, where available 1024. The automated allocation of a 

workgroup size at runtime by the compiler was also utilized, by passing the argument 0 to the 

workgroup size, allowing the application to determine the best size allocation.  

4.2.1  Host Code 

The development process began with allocating the memory buffers that will hold the 

compute elements and resulting data. This is done by determining the size of the matrixes based 

on the number of elements, as seen in Figure 11. Because the application is designed with square 

matrixes in mind, number of elements is determined by squaring the number of rows/columns. 

With the matrix elements being of type float, the necessary memory can easily be determined 

using the “sizeof” function.  

 

Figure 11: Memory Buffer Allocation 

 The memory buffers are filled with randomly generated numbers based on a predefined 

seed making use of C’s rand function. Figure 12 illustrates the basic function employed in 

element allocation.  
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Figure 12: Function for Matrix Element Allocation 

 The first step in the aforementioned OpenCL flow is the allocation of a compute 

platform. In this case, the application allows the user to determine which platform to use for the 

computation; this is done as a target system may have multiple OpenCL implementations or 

different compute devices.  

 

Figure 13: Identifying Available Platforms. 

As such, the application must first determine how many platforms are available, allocate 

memory for them, and finally store platform information in memory, as seen in Figure 13.  A 

while loop is created past this that enables a user to pick a targeted platform based on the 

compute devices existing within the platform, Figure 14. The user is then asked to pick between 

targeting a CPU device on the platform or a GPU device, Figure 15.  

Note: The application is not optimized to work with platforms that contain multiple devices of 

the same type and will always pick the first one detected. 
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Figure 14: Device Cycle Loop 

 

Figure 15: CPU/GPU Decision Point 

Once user input has been finished the application creates the OpenCL context based on 

the chosen device’s ID. It can be noted in Figure 15 that each is called with error checking in 

place.  
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The command queue is initiated, with OpenCL profiling enabled, in order to determine 

total execution time of kernels, Figure 16.  

 

Figure 16: Command Queue Initialization 

The OpenCL kernel is loaded from a separate file that is read into memory during 

runtime and then compiled into an executable based on the chosen architecture. This allows for 

device portability however it does not affect profiling times, Figure 17. 

 

Figure 17: Building Program Executable 

Once the compute kernel is creates, memory must be allocated on the device to contain 

all three matrixes, the first two are copied from the host, and the first is merely instantiated, as it 

will contain the result of the matrix multiplication, Figure 18.  

 

Figure 18: Allocating Device Memory 
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The kernel arguments are then passed; they contain the memory buffers and matrix sizes, 

Figure 19 

Figure 19: Kernel Argument Passing 

At this stage, Work-group and Work-item sizes are set and the kernel is queued in the 

command queue for execution, and the application waits for the kernel cu finish, Figure 20.  

 

Figure 20: Command Enqueue 

Finally, the contents of the calculated matrix memory buffer are read back into the host 

and profiling data is called in order to determine execution duration. This duration is calculated 

using built-in profiling tools offered by the OpenCL framework, and take into account the 

duration between the first and last command executed by the kernel on the compute device, 

Figure 21. 
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Figure 21: Data Retrieval and Profiling 

Last but not least, all memory allocations are cleared and the application terminates, 

Figure 22.  

 

Figure 22: Memory Clearing 

4.2.2  Kernel Code 

The kernel code is fairly straightforward, it takes in the global buffers containing the two 

populated matrixes, the buffer containing the output matrix and the number of rows and columns 

of the matrixes.  It defines the two working dimensions using a work-item ID call, 

“get_global_id”, and based on this information calculated the value of each individual element of 

the resulting matrix, Figure 23. 
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Figure 23: OpenCL Kernel Code 

Later versions of the application used external arguments as opposed to user input in 

order to facilitate batch execution. The information passed externally was, platform number, 

device type, matrix size and workgroup size, Figure 24.  
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Figure 24: External Argument Code Snippet 

4.3  Test Bench Environment 

 This section will cover the execution of the developed test-bench applications for 

OpenCL on available compute systems in the form of workstations. The main focus is to 

determine a performance baseline for execution based on standard CPU execution time and 

compare that against a GPU unit. 
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4.3.1  System Specifications 

Table 1: System Specifications 

Specifications System I System II System III System IV  

CPU Intel i5-2320 Intel i5-2310 Intel i5-3470 Intel i7-3770 

Frequency 3.00 GHz 2.90 GHz 3.20 GHz 3.40 GHz 

Compute Units 4 threads 4 threads 4 threads 8 threads 

Workgroup Size 1024 1024 1024 1024 

GPU AMD HD 6570 AMD HD 6570 NVIDIA 750 TI AMD HD 6450 

Frequency 650 MHz 650 MHz 1.02 GHz 625 MHz 

Compute Units 6 SM 6 SM 5 SM 2 SM 

Workgroup Size 256 256 1024 256 

 

The number of compute units refers to the amount of processors available to any device, 

in CPUs this is equal to the number of threads however in GPUs it refers to the Stream 

Multiprocessors. Stream Multiprocessors consist of multiple stream processors, the specialized 

processing computational resources used in graphical processing. In the case of AMD GPUs 

each SM accesses 80 processing elements, while for the NVIDIA each SM contains 128 

processing elements. (Asano, Maruyama, & Yamaguchi, 2009) 

A workgroup is a collection of computations all executed on a single compute unit.  Since each 

computation unit hands a work-group, increasing the size of these work-groups allows for the 

exploitation of inherent parallelism at device level and reduces communication overhead at the 

expense of device memory.  
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 System I was the development computer and had the development kit installed. 

 System II was chosen as an almost identical system to the 1
st
 however without any 

specific software installed, to determine if efficiency can be affected by the presence or lack of 

OpenCL development software.  

 System III was chosen in order to test functionality over a different GPU hardware 

provider in the form of an NVIDIA GPU.  

 Systems IV was chosen in order to determine the CPU performance increase for a CPU 

with twice as many cores as System I which was considered the baseline.  

4.4  Application Execution 

 The first tests using OpenCL applications were based on the Matrix Multiplication 

application described in the previous section. The used application was not optimized for any 

architecture and featured OpenCL profiling for kernel execution duration reporting. The 

application was compiled on a Windows machine using Visual Studio 2013 and the AMD APP 

SDK. 

 Execution was done using the windows command line interface and later on batch scripts 

which queued all executions and logged results to a file. This minimized any effect user 

interaction might have on overall execution time. 

 

Figure 25: CPU Matrix Multiplication 
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Figure 26: GPU Matrix Multiplication 

 Each matrix size/workgroup combination was iterated 5 times, the results logged and 

averaged below in Table 2, the best performing workgroup size was highlighted in green. The 

duration was reported in milliseconds, however, due to the large execution times, Table 2 also 

shows the duration in minutes for the larger sized matrixes. 

4.4.1  System I 

 System I represents the development machine, on which all applications were designed or 

modified, it includes a suite of development software kits that allow for debugging and 

monitoring of applications and as such contains 4 different OpenCL platform environments. 

Table 2: CPU Execution System I 

Execution Time ms Workgroup 

Matrix Size 0 64 256 1024 

512 72.45 62.78 61.75 63.54 

1024 2,320.77 2,204.63 2,183.47 2,218.83 

2048 33,519.61 28,889.39 28,484.52 35,120.07 

4096 (5 m)347,118.99 (4 m)277,252.29 (4 m)263,592.12 (5 m)328,294.72 

8192 (47 m)2,766,358.04 (38 m)2,336,417.39 (38 m)2,333,558.53 (45 m)2,729,901.38 
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 Although the GPU in System I operates at a much lower frequency than the CPU, its 

compute units have access to 80 Stream Processing Units each, for a total of 480 SPUs to be 

used in algorithmic acceleration. It is worth mentioning that porting this application from CPU to 

GPU involved the alteration of one argument in the host code. Also, for the GPU 

implementation, a workgroup size of 1024 could not be allocated as the maximum permitted by 

local memory is 256.  

Table 3: GPU Execution System I 

Execution Time ms Workgroup 

Matrix Size 0 64 256 

512 23.67 42.01 25.35 

1024 212.89 278.06 141.13 

2048 1,711.68 2,209.27 1,110.44 

4096 13,732.36 17,709.84 8,917.50 

8192 (1.5 m) 106,116.71 (2 m) 142,785.23 (1 m) 71,308.35 

 

 It can be easily noted in Table 3 that the GPU outperforms the CPU even at the smallest 

execution sizes used; however, the speed-up becomes more apparent as it goes from x2 to x32 

depending on the number of computed elements. This is both because of the increased number of 

parallel executions and the reduced impact of data transfers.  

 This data shows that an entry-level GPU is able to achieve a speed-up of up to 30 times 

that of its CPU counterpart, where speed-up is proportional to the size of the calculated matrix. 

Development effort for application porting and performance increase is minimal, however with 
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GPU specific optimizations for memory usage and transfers higher speed-up values could be 

obtained. 

 Automatic workgroup allocation at runtime by the OpenCL compiler leads to the slowest 

execution on CPU; however this is not the case for GPU implementations. This leads to the 

conclusion that while automatic allocations is not a good design practice for applications, it can 

be used in highly heterogeneous systems where applications would otherwise have to be 

designed with the specifications of the weakest system in mind.  

 Full CPU benchmarking, with 5 iterations, resulted in around 16 hours of compute time, 

for the GPU execution using the same parameters the compute time was reduced to around 30 

minutes. However, for a more fair comparison, the 1024 workgroup execution would need to be 

excluded from compute time, leading thus to a duration of approximately 12 hours. 

4.4.2  System II 

 This computer system is one of the workstations available in the University of 

Huddersfield computer labs. Specification wise it is almost identical to the development unit, 

however it lacks any form of development kit for OpenCL or similar drivers. However, OpenCL 

drivers required for execution are available within the basic Intel CPU drivers, and as such 

benchmarking should not be affected. Also, it is expected that GPU execution will also be 

guaranteed by Intel drivers.  

 CPU execution results remained mostly consistent to those from the previous system, 

with performance being at most 10% slower on System II compared to System I.  
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 GPU execution however failed passed matrix sizes of 1024, leading to the inability of 

running the full benchmark. When executing the application with any matrix size over 1024, the 

GPU driver crashed and was restarted by Windows. This reset the GPU while the kernel was still 

execution, leading to a seemingly unending execution time, Table 4.  

 This issue was traced to the timer watchdog within Windows, its purpose is to monitor 

GPU execution and stop any application that appears to be stuck. This is done to ensure that the 

user does not lose access to the computer if an application gets stuck in an endless loop. Since 

OpenCL uses the entire GPU during execution, when the GPU used also drives the display, the 

latter freezes, preventing the user from issuing further commands until the program finishes. 

According to Microsoft specifications, the default wait time for this watchdog is 2 seconds; 

however this was not the case for the development machine since it had no issues completing the 

execution. (Microsoft) 

Table 4: GPU Execution System II 

Execution Time ms Workgroup 

Matrix Size 0 64 256 

512 19.22 36.61 17.60 

1024 175.25 271.39 138.63 

2048 1,454.87 2,153.37 1,086.38 

4096 13,457.71 17,444.19 8,712.4 

8192 103,994.37 141,357.37 70,773.537 

 



Investigation of Heterogeneous Computing                                      58 

 

58 

 

 Further investigation revealed that System I had a timeout of 180 seconds, while System 

II did not have a defined register key for the timeout function, thus reverting to the default 2 

second value. It is assumed that this registry is created and managed by the GPU drivers on the 

system, based on specifications offered by the GPU vendor. Since System II did not have any 

proprietary drivers installed and was running off of the base windows drivers, the register entry 

increasing the GPU timeout did not exist.   

 Based on this evidence it becomes obvious that certain alterations are needed in the 

application design that would ensure host-device communication within the allocated timeout 

period, as to avoid triggering the timer watchdog.  

4.4.3  System III 

 Following unsuccessful execution on a driverless system, and in order to investigate 

performance on a different GPU architecture, a NVIDIA based system was chosen as a third 

target.  On this machine, OpenCL fails to identify the GPU device as part of the base platform 

since NVIDIA does not share compilers with other manufactures, as such, in order to execute 

OpenCL applications that target NVIDIA GPUs the proprietary GPU drivers need to be installed. 

Since previous work has shown lack of proprietary drivers prevents complete benchmark 

execution, they were installed on this system prior to benchmark execution.  
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Table 5: CPU Execution System III 

Execution Time ms Workgroup 

Matrix Size 0 64 256 1024 

512 72.04 74.40 78.35 72.63 

1024 2,486.66 2,964.48 2,547.38 2,403.90 

2048 26,245.34 27,082.33 25,748.42 24,648.62 

4096 253,705.94 247,687.54 244,500.25 241,906.53 

8192 2,021,904.59 2,087,273.88 2,164,539.81 2,011,549.21 

 

 For the CPU implementation, speed-up compared to the initial test system is once again 

unnoticeable for all except the highest matrix values. At matrix values of 4096 and 8192 the 

CPU in System III, which is one generation newer than the previous ones displays a performance 

increase of up to 20%. This increase is likely due to improvements in data transfer protocols and 

bus speeds becoming relevant only at large data sizes.   

Table 6: GPU Execution System III 

Execution Time ms Workgroup 

Matrix Size 0 64 256 1024 

512 3.15 5.39 3.68 3.13 

1024 27.41 44.75 30.20 30.20 

2048 331.65 349.38 254.96 203.05 

4096 3,072.67 2,836.21 2,195.49 1,630.01 
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8192 25,304.24 23,421.24 17,857.63 13,260.44 

 

 The GPU benchmark on System III displayed a performance increase over the GPUs in 

the previous systems; this performance increase is attributed to the much newer architecture 

inside the NVIDIA GPU, increased frequency and number of processing units.  

 The GPU timeout error identified earlier was still present initially on the system, however 

it could be easily altered within the NVIDIA Nsight control panel, ultimately this issue would be 

resolved at software level instead of relying on workarounds.   

Table 7: GPU Speed-up Against Baseline 

GPU speed-up GPU 

Matrix Size System I System II System III 

512 2.4 3.5 19.7 

1024 15.5 15.8 72.3 

2048 25.7 26.2 140.3 

4096 29.6 30.3 161.7 

8192 32.7 33 176 

 

Table 7 shows the speed-up obtained by targeting GPU devices instead of CPUs, 

compared to the CPU baseline on System I, and displays an increase of up to 30 times on a GPU 

architecture that is part of the same generation as the CPU and upwards of 170 times for a much 

newer and faster GPU architecture.  
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4.4.4  System IV 

 CPU execution on System IV was aimed at determining the performance increase on the 

CPU when the number of available compute units was doubled; GPU execution was excluded 

since the device was found to be out-dated. 

Table 8: CPU Execution System IV 

Execution Time ms Workgroup 

Matrix Size 0 64 256 1024 

512 59.45 62.76 58.22 57.58 

1024 1,779.39 1,853.35 1,794.15 1,778.48 

2048 16,716.48 17,343.45 16,108.97 16,090.35 

4096 193,401.82 194,583.96 187,702.54 187,492.11 

8192 (20 m)1,192,011.20 (24 m)1,467,616.96 (25 m)1,490,003.31 (19 m)1,165,134.26 

 

 

Table 8 shows a number of differences compared to Table 2, a direct comparison shows a 

performance increase between 20% and 120%, however running a comparison based on the best 

performing workgroup size of each CPU shows that performance actually varies between 15% 

on lower matrix sizes, and 80% at higher matrix sizes.   

4.5  Conclusions 

 CPU performance in parallel heavy applications is influenced more heavily by number of 

available threads than it is by the speed of individual units. GPU performance was shown to 
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increase with computational size due to the decreased impact of overhead in data 

communication, and the ability to better parallelize execution across more elements. 

 The OpenCL environment is fragmented, with device vendors implementing platforms 

that only function on a certain devices and that are based on various versions of OpenCL. This 

hinders the development of fully heterogeneous systems and suggests that the system is not yet 

fully mature.  

 Development effort for architecture porting is minimal for the CPU and GPU architecture 

for applications that do not feature device specific optimizations. Automated workgroup 

allocations at runtime are not viable unless the targeting multiple types of device simultaneously. 

 In order to ensure kernel execution without the interference of the GPU watchdog timer 

on Windows machines certain modifications must be made within the application to ensure that 

host-device communication takes place at regular intervals regardless of kernel execution 

duration. On slower systems, where the kernel execution might take over two seconds, the lack 

of such a system leads to kernel failure and prevents execution. While this could also be solved 

by decreasing the complexity of kernels and increasing their numbers, it would also affect the 

performance on faster systems. 

 Drawing from the findings of the above work a much larger test-bench was envisioned. 

One that would span hundreds of systems simultaneously, and if successfully implemented, 

would also expand the computational capabilities of the University of Huddersfield. A different 

application was desired for this test-bench, one that featured better optimizations for GPU 

computing, and could tackle the watchdog issues described above. This new test-bench, and the 

application selected for it, is described in the following chapter. 
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Chapter 5: OpenCL framework implementation over HTCondor 

 Based on promising results from initial testing, together with the existence of unused 

GPU resources within the compute infrastructure of the University, a project was proposed to 

exploit idle general purpose GPU resources for compute applications.  A prime candidate for this 

was identified in the field of High-Throughput Computing.  

 In High Throughput Computing emphasis shifts from job execution rate to discrete job 

parallelism, meaning that the speed of individual compute resources is not as relevant as their 

number, availability and overall throughput. Prioritising throughput over frequency allows HTC 

to exploit opportunistic environments, where the number of available resources is constantly 

changing. One such environment is a University campus, where workstations can be used for 

computational purposes when otherwise idle, a process referred to as cycle-stealing. (Livny, 

Basney, Raman, & Tannenbaum, 1997) 

 A tool created specifically for this purpose is HTCondor, a workload management system 

for heterogeneous, opportunistic environments. In HTCondor tasks are distributed among 

available resources; where the term resources refers to workstation PC’s that have been idle for a 

set period of time. The system incorporates job execution queues, scheduling, prioritization, 

resource discovery, and of course, resource management. Another important feature, and one 

closely tied to the cycle-stealing mechanism, is a checkpoint system that prevents total work loss 

in the event of a workstation being removed from the resource pool, be it due to hardware 

failures or idle state being broken by used activity. For example, if a user returns to his 
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workstation during job execution, the job is then migrated to a different workstation. With 

applications that support check-pointing, the data loss can be kept at a minimum.  

 Submitted jobs are matched to resources by using the ClassAd mechanism, a framework 

that allows both jobs and machines to specify requirements and or preferences in regards to 

resource allocation. The system actively scans for resource changes, and removes workstations 

that have been taken offline, or have not been available for long periods of time. 

  The University of Huddersfield implements an HTCondor pool, with an approximate 

2300 workstations on campus, the resource pool totals at around 7000 CPU cores. However, due 

to the opportunistic nature of this system, peak availability is never achieved, with daily reports 

averaging between 700 and 3000 available nodes at any given time. The system is part of the 

Queens Gate Grid, the supercomputing resource created to support the research community at the 

University of Huddersfield. (Gubb, 2013) 
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Figure 27: Condensed Path of HTCondor Access 

 The goal of this research was the integration of the existing GPU resources within the 

HTCondor pool, supplementing the existing CPU based implementation without introducing any 

changes that would affect existing end-users. The resulting GPU resources would be used to 

supplement the dedicated GPU cluster. Another goal of this was a case-study of the 

effectiveness, flexibility and ease-of-use of the OpenCL framework across a highly 

heterogeneous resource pool. The chosen benchmarking application was based on Fast-Fourier 

Transforms. 

While a significant number of Universities across the UK deploy HTCondor pools within 

their campuses, there is limited research output indicating GPU compute integration within these 

pools. (Gubb, 2013) 
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 GPU detection within an HTCondor system is facilitated by two built-in detection 

software applications. These are: 

1. CUDA based detection; 

- Software detects CUDA compliant GPUs, returns device name, memory limits and 

core count; 

2. OpenCL based detection; 

- Software detects OpenCL compliant GPUs, returns device family and memory. 

 Relying on a CUDA based approach limits the use-case to only NVIDIA GPUs, and the 

built-in OpenCL algorithm does no return enough relevant information about the existing 

resources. For this reason, a different OpenCL program was designed, to poll a target computer 

for all available OpenCL devices (be it CPU or GPU) and record information. As OpenCL is 

compatible with CUDA devices, there is fragmentation when using it, thus trading platform 

specific optimizations for increased flexibility. 

 Device detection was executed over the live environment, where normally, the 

opportunistic environment works against benchmarking or individual node execution. This was 

overcome via the use of script based generation for ClassAds, targeting individual machines. 

1000 units were randomly selected from the pool to partake in the benchmarking.  GPU 

discovery is evidenced in Table 9. 
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Table 9: GPU Landscape 

 

As can be seen, although the system is very diverse, around 30% of polled machines 

failed to execute the GPU detection software.  Following a brief investigation it was determined 

that a number of machines did not have video drivers installed for the dedicated GPU cards, thus 

preventing OpenCL execution. Vendor distribution is even, at around 50% each, not accounting 

the failed reads. Age-wise, the devices are fairly old in terms of GPU architectures, being 

released 2-3 generations ago. The performance gap between GPU generations is made evident by 

the performance graphs showing in this work. 

5.1  Fast Fourier Transforms 

 It was decided that the previously designed application, for matrix multiplication, was not 

optimal for this new test-case, and a real world engineering application was needed to more 

accurately portrait the performance to be expected within such a system. 

 One such application, presented in investigated literature as frequently used in digital 

signal processing is the Fast-Fourier Transform, an algorithm for converting signals for 
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representing time-domain signals in frequency domain. The FFT operation can be broken down 

into three major steps. (Brigham, 1974) 

 First, a multi-point time-domain signal is decomposed into multiple time-domains signals 

containing a single point. For example a 16 point signal is decomposed into 16 signals with one 

point each. The decomposition process, in this case, takes 4 stages to complete, each stage 

doubling the number of signals while halving the number of points per signal, thus resulting in 2, 

then 4, then 8 and finally 16 signals. Also, the decomposition process is interlaced, meaning that 

the signal is split into odd and even numbered samples, as observed in Figure 28. Note; this is 

generally done via bit reversal sorting, by flipping the binary value of the signal number. The 

number of stages needed to complete the operation is equal to the  

 

 

Figure 28: FFT Interlaced Decomposition 
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 The second step lies in calculating the frequency spectrum for each resulting time-domain 

signal. This is the easiest task, as the frequency spectrum of a 1 point signal is equal to itself. 

 The final, and most complex step, involved combining the frequency spectra generated 

into a single spectrum. This is done in the reverse order of the original decomposition, which in 

the example case would be again 4 stages, yielding a 16 point frequency spectrum. The 

computational elements required to create these spectra are known as butterfly calculations.   

 

Figure 29: FFT Butterfly Calculation 

 An application for OpenCL based FFT computation optimized for GPU execution, 

primarily on the AMD architecture, that also support CPU execution for heterogeneous 

computing was discovered in the form of the clFFT library. This library offers a set of functions 

that can be used to create applications aimed at FFT execution on GPU devices. (AMD, 2016) 

 The clFFT library also offers a benchmark application, called clFFT client, which allows 

for the rapid assessment of device performance across multiple environments. It is a thoroughly 

designed application that includes device specific optimizations for both CPU and GPU 

architectures. As such it was chosen as the benchmark application, as opposed to designing a 

similar application that would serve the same purpose. 
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 The application was compiled from source to both allow for the understanding of the 

library functionality and to allow further development of FFT applications based on the clFFT 

library.  

5.2  Benchmark Execution  

 GPU benchmarking was accomplished over the same live environment as the previous 

set, namely over the 700 machines detected as having GPU components during. The chosen 

application for GPU benchmarking was Fast-Fourier Transform, a computation that is both 

widely used in the field of engineering and makes use of the massively parallel GPU 

architecture. Each of the 700 units executed single-dimensional FFTs over 17 sizes, with 1000 

iterations per size, to ensure benchmark precision. This resulted in approximately 12 million 

FFTs, and roughly 28,000 CPU hours. It would take a single computer, fitted with a regular 4 

core CPU, more than 3 years of constant work to accomplish this task. (Dafinoiu, Higgins, & 

Holmes, Accelerating High-Throughput Computing through OpenCL, 2016) 

 When operating in a heterogeneous environment as HTCondor, knowing what devices 

are available prior to execution is challenging, thus an application aimed at such a system should 

incorporate means of dynamically optimizing resource allocation during run-time. This however 

is being the scope of this work, and as such, the lowest common denominator was used when 

optimizing the application performance.  

 CPU performance was established for comparison purposes, on a standard Intel i5 CPU, 

as seen in Figure 30. The metric used to measure the performance of the system was the Giga 
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FLOP. The formula used to derive the GFLOPs is shown in the HTCondor Related Scripts 

section. 

 

Figure 30: CPU Benchmark 

 Executed in a controlled environment, the benchmark takes between 60 and 75 minutes 

on an average system to complete. On the live environment however, execution duration was 

greatly affected by resource usage during the day. This resulted in full benchmarking taking 

around 48 hours, with most of the systems being able to complete their work at night. This is due 

to having fixed allocations for targeted computers, which is only the case during benchmarking.  
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Figure 31: GPU FFT Performance 

 Detailed performance is showcased in the above chart, with a more detailed breakdown 

given below.  

 The chart shows extremely varied performance across the system, with results ranging 

between 7 and 180 GFPLOPS of performance. One can observe that with each generation of 

GPUs, as evidenced by the release year referenced in Figure 31, performance is increased by a 

significant amount. This becomes more evident as one inspects the clock-speeds and compute 

units available in each GPU generation, factors which influence the overall performance of 

parallel based computations.   

 Performance-wise, the newest GPU card, the NVIDIA GTX 970, is the best performing 

GPU, while also being the 3
rd

 most used GPU in the pool. Due to university policies, computer 

systems are upgraded every few years, leading to a reduction in underperforming GPUs within 
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the HTCondor pool. For example, the worst performing GPU in the system, the AMD 5600, is 

on average 15 times slower than the maximum, but it also only exists in 8 of the 700 computers, 

as it is slowly replaced by newer hardware. 

 However, the University employs a dedicated GPU cluster for massively parallel 

applications like the FFT, and as such, any new contender needs to be compared against it, in 

order to determine its effectiveness. This cluster is comprised of two NVIDIA C2050 computing 

processors, these GPUs are purpose-built with parallel computation in mind, incorporating error 

correction codes, high memory, and asynchronous, high-speed, memory transfer. Released in 

2010, these GPUs advertise 448 cores operating at 1.15 GHz. In perspective, the GTX 970 cards 

advertise 1664 cores operating at 1.05 GHz. (Dafinoiu, Higgins, & Holmes, Accelerating High-

Throughput Computing through OpenCL, 2016) 

 

Figure 32: GPU Cluster Comparison 
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 As can be seen in Figure 32, HTCondor average performance closely matches that of a 

single dedicated GPU card. This however is on a per-node basis, meaning that there are hundreds 

of more nodes available on HTCondor that on the dedicated cluster, capable of handling GPU 

computation. 

 It can also be noticed that the average performance of NVIDIA GPUs, or better said, 

cards newer than 2010, greatly outperforms the C2050. A noteworthy mention is that the GTX 

970 has twice the compute units of the C2050 while also operating at almost twice the clock 

speed.  

 This benchmark revealed an untapped resource of approximately 30 Teraflops 

computational power on just the 700 nodes, extrapolating the results to the 2200+ nodes on 

campus, the peak performance of the HTCondor system reaches 90 Teraflops. 

 OpenCL integration within the HTCondor resource pool has revealed a number of GPU 

resources that can be exploited in order to increase system performance for parallelizable 

applications. OpenCL has proven to be a highly versatile framework easily adaptable to a highly 

heterogeneous environment. 

 This work has shown that newer generation general purpose GPUs are able to match the 

performance of older dedicated GPU resources, offering a much better price/performance ratio.  

However, maximizing performance over a heterogeneous system, such as HTCondor is 

extremely difficult, and requires changes to both the application and the system itself. The 

OpenCL framework, through its flexibility and ease-of-use, is a valid candidate for developing 

heterogeneous applications over such systems. A conference paper based on this work was 

published with the Emerging Technologies Conference in June 2016, where it received positive 
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feedback from reviewers and peers. (Dafinoiu, Higgins, & Holmes, Accelerating High-

Throughput Computing through OpenCL, 2016) 

5.3  HTCondor Related Scripts 

  The HTCondor heterogeneous resource pool was not designed to allow for benchmarking 

of individual units inside the pool.  As such, picking a set number of units and executing a given 

application over each individual unit is not supported by the system, and accomplishing this task 

required the use of automation scripts. Also, the computation of 17 FFT executions over 700 

computers results in a large amount of generated files that need interpreting. The 1000 iterations 

are managed inside the application, and as such do not count towards the number of generated 

files. 

 Also, the formula used to derive the GLFOP performance of each individual system, used 

by the clFFT client is: 

                                                                              

                       

 Where 5 is a constant for real FFTs calculations, and walltime is the duration of the 

execution. (AMD, 2016) 

5.3.1  Condor Individual Unit Execution 

 In order to ensure that applications execute on each of the 700 targeted units only once, 

no matter how many are available or how many times the job is restarted, the only solution 

identified was by demanding from HTCondor a specific machine for each job.  
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 As such a script was written, this scripted created a job-file to be submitted to HTCondor 

based on each line within a predefined file. This file contained the hostname of each of the 700 

computers on a separate line.  This script was written for the Linux shell environment used on 

HTCondor, Figure 33. 

 

Figure 33: Shell Script for Execution 

 The above script contains all the standard job parameters of an HTCondor job (minus 

architecture requirements, for simplicity) and as can be seen creates and queues a job iteration 

for each machine, asking that the output file resulting from the said job be named after the 

executing machine. This generated output file contained the 17 executed FFT outputs.  

5.3.2  Individual Machine Benchmarking 

 It can be noted in Figure 33 that the executable passed to HTCondor is not the clFFT-

client application, but rather a batch script written for windows. This script executes 17 different 

instances of the application each with different parameters. The arguments passed were related to 

the size of the computed FFT, the number of iterations run, the chosen device architecture, and 

the so-called batch size, which reflected the size of the used arrays, similar to the workgroup size 
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used in the Matrix Multiplication benchmark. It is worth mentioning that maximum batch size 

was determined by a mix of used FFT size and device memory, leading in lower batch sizes 

being used for larger FFTs. Note; the batch script also executed the application with an argument 

that returned the name of the targeted device, in order to determine what type of GPU executed 

the application. 

  

Figure 34: Fragment of Windows Batch File 

5.3.3  Data sorting and processing 

 The resulting data was processed and sorted on the development machine, using a batch 

script and a python script. The batch script moved all files relevant to an FFT size into an 

intermediate folder, and then executed the python script for that folder, logging the output into a 

separate file, and then moving the files from the intermediate folder to a separate location for 

storage.  This was iterated for each FFT size, and resulted in 17 files containing only the relevant 

timing information needed for benchmarking, Figure 35. The remaining files the ones containing 

the device name. They were moved to a separate file.  

 Performance sorted by GPU device used was retrieved in Linux, using the GPU names to 

determine which files to target, then the “grep” command to retrieve the execution duration and 

GFLOPS. 
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Figure 35: Python Script for Data Sorting 
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Chapter 6: OpenCL FPGA Acceleration  

The FPGA, introduced in a previous chapter, is a type of integrated circuit designed 

specifically to be altered after manufacturing. The FPGA is based on configurable logic blocks 

connected via programmable interconnects, these features allow for the “field-programmable” 

element of the FPGA, altering the design after manufacturing. 

 Over the past years FPGAs have found their way into many different markets, from 

image processing to networking, from audio applications to aerospace applications, the 

versatility of the FPGA and the much lower development costs associated with its usage have 

allowed it to flourish.  

 FPGAs come in many different shapes and sizes, depending on their intended purpose. 

Those relevant to networking industries come in rack-mounted chasings with network 

connectivity and increased RAM. Those dedicated to image processing may come in a PCI-E 

format, and could lack network connectivity entirely.  And while all these FPGAs are different, 

in terms of I/O connections, memory, and size, they are all programmed in the same way. This is 

because the low-level allocations on the actual chip are handled by the compiler. The user is able 

to make low-level allocations to further tune and optimize the device, however it is not 

mandatory. From a programming perspective, the FPGA is like a blackboard; the user draws 

upon it the schematic of the desired design, making sure not to exceed the size of the board. 

Alterations to the design are possible, and as easy as wiping chalk off the board. However, unlike 

the blackboard, which can only be used to prototype a design, the FPGA allows for the full 
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implementation of the system, and further functional testing and redesign. (Dafinoiu, FPGA 

Based Implementation of Offset PPM, 2015) 

 The FPGA takes a parallel approach to instruction execution, limited by the amount of 

logic blocks and interconnects available. Whereas a CPU is only able to execute one instruction 

at a time, or a small number of them on a multi-core CPU, the FPGA is able to spawn as many 

processes as it can fit within its size for the desired task.  

 One of the main drawbacks of using FPGAs, especially for computational purposes, has 

been the steep learning curve of the HDL environment, as well as the need for a parallel 

approach to computing. This is why this chapter aims to investigate the usability of the OpenCL 

framework for FPGA design. 

6.1  Hardware Description Language 

VHSIC HDL, or VHDL for short, is a hardware description language used to describe 

digital or mixed-signal systems in electronic design. Unlike more familiar programming 

languages which run instructions sequentially, VHDL runs operations in parallel, making it a 

dataflow language. Parallel execution is done via the use of processes that are able to run 

independently of one-another, being executed when a predefined criteria is met. VHDL allows 

for the text description of a logic circuit which is then synthetized, simulated and placed onto a 

chip to create a working design. Being an IEEE industry standard for FPGA programming, 

VHDL is easily ported between different FPGA devices, given viable hardware configurations. 

(Pellerin, 1997) 
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 One of the main disadvantages of using VHDL is the design complexity of projects, since 

VHDL is not as high-level a language as C/C++. There are also many different software 

development kits offered by FPGA manufactures, each utilizing a completely different set of 

tools, and features, that further encumber the design process. Also, because the FPGA targets a 

more niche market than conventional programming languages, there is a lack of available 

instructions on the use and optimization of FPGA designs, with many designs being offered as 

ready to use Intellectual Properties. 

6.2  Altera SDK for OpenCL 

 Because of the way an FPGA is designed, the approach to using OpenCL to program it is 

not as straightforward as the ones for GPU or CPU. This is because prior to being designed with 

a task in mind the FPGA is a blank slate, as such unable to be exploited for computational needs. 

In order to program, or flash, the FPGA to be used as an OpenCL accelerator, a compiler is 

needed to turn OpenCL kernel code into the binary coded used to flash the FPGA. (Altera, 2011) 

 Altera, being one of the leading FPGA developers, as well as one of the founding 

members of the Khronos group, developing OpenCL, offers a SDK for OpenCL, known as 

AOCL, to allow for the creation of FPGA based OpenCL applications. In essence, the SDK is 

easy to use; it simply takes an OpenCL kernel code and converts it into a file that can be used to 

flash the FPGA so that it can be used as an accelerator. 

 The OpenCL SDK uses its own OpenCL calls in the host and kernel code, since the 

FPGA operates differently from previously discussed systems. Also, FPGA design greatly 

benefits from properly optimized algorithms due to its much higher compute unit count. Altera 
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OpenCL designs are based on the Altera specific ”utils.h” library rather than the “cl.h” library. 

The utils library is not a stand-alone implementation of OpenCL, but rather a set of functions 

specifically created for FPGA use that sit on top of the OpenCL library. (Altera, 2011) 

 The Altera OpenCL SDK, unlike CPU or GPU OpenCL SDKs is not free, following the 

trend in FPGA development environments, which are not inherently available to the general 

public, making FPGA OpenCL development more of a niche market than the FPGA one.  The 

SDK is however offered for free as part of the Altera University programme, and was acquired 

towards the end of the project. Hence, data gathered for the FPGA development and 

benchmarking sections is limited; a more detailed and in-depth research will be conducted as part 

of future work. 

6.2.1  Altera Offline Compiler 

 The AOC is used to compile .cl kernel codes into hardware configuration file, containing 

the FPGA image to be used in a binary format. This is used by the host, at runtime, to execute 

the kernel applications. The AOC generates the files needed to program the FPGA and execute 

the kernel application during runtime, Figure 36. (Altera, 2016) 
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Figure 36: AOC Flowchart 

 The AOC employs two types of compilation; a one-step compilation for simple kernels 

that feature minimal compiler optimizations. It is a simple procedure involving a single 

command that generates an .aoco file containing intermediate information and used in generating 

the next file, the .aocx. This second file contains the binary for the hardware configuration of the 

FPGA and is used by the host during runtime to create and execute the kernels on the device. A 

subfolder is generated along with the two files contains a number of intermediary files used to 

create the final hardware binary. A log file is also created containing the estimated resource 

usage within the FPGA. 



Investigation of Heterogeneous Computing                                      84 

 

84 

 

 The multi-step compilation is used in more complex kernels, which can greatly benefit 

from optimizations. The first step assumes the form of an intermediate compilation, which 

checks for syntax errors, then creates the .aoco file without generating the hardware binary for it. 

This step also generates the log file showing estimated resource usage. 

 Second, the functionality of the OpenCL kernel can be emulated on one or multiple 

emulation devices to locate any existing functional errors. Third, the resource usage of the 

OpenCL kernel on the FPGA can be reviewed to uncover possible optimizations to hardware 

resource usage. 

 Profiling, allows the introduction of performance counters into the .aocx file. These 

functions measure performance during runtime and can be interpreted using the Altera Profiler to 

further optimize the application. 

 Once all desired steps are achieved, the final application can be compiled from the .aoco 

file to generate the desire .aocx. 

6.2.2  Application porting 

In order to function with the AOCL, any OpenCL design targeting Altera FPGAs benefits 

from using the libraries released by Altera for this purpose reason; which add number of features 

to the base OpenCL library.  

For example, the opencl.cpp file shipped by Altera together with an OpenCL example 

design contains both functions that are relevant to application design, such as error checking, 

profiling, or wait-timers, but also a number of Altera specific functions for memory allocations, 

.aocx interpretation, and memory clean-up. In Figure 37, memory buffers are created for two 
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input matrixes, these are allocated into the FPGA memory on two separate banks, which 

increases memory bandwidth during data transfers. 

 

Figure 37: Custom Memory Region Targeting 

These libraries ensure faster development of FPGA based OpenCL applications at the 

cost of encumbering cross-platform design. It was shown in a previous chapter that with minimal 

changes an OpenCL application could be changed between targeting CPUs and GPUs; however 

the FPGA implementation requires a much more complex redesign. Despite this, the FPGA 

segment could be implemented alongside the former two, in order to create a unified, 

heterogeneous application. 

6.3  DE1 System-on-Chip 

 The FPGA platform chosen for the development and benchmarking of OpenCL based 

applications was a development kit aimed at university use known as the DE1 System-on-Chip. 

This small development board features an ARM CPU paired with an ALTERA FPGA designed 

for embedded applications. (Terasic, 2016) 
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Figure 38: DE1 SoC Development Board 

 The device includes multiple features intended for user input during run-time, embedded 

system operation as a standalone computer, and expansion slots, however these features are 

beyond the scope of this work and as such are not explored further. 

6.3.1  Setup 

 Before software development began, the SoC was set-up for OpenCL execution, 

connected to a PC for command-passing, and tested for functionality.  

 Given that the FPGA is controlled by the embedded ARM CPU, an operating system 

must is required to control all actions on the board. Prior to initial start-up of the device, the 

FPGA configuration mode must be defined using the on-board via the MSEL pins.  
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 There are three modes in which the FPGA can be configured; first, the FPGA is 

programmed using the on-board flash memory. This is used when programming the FPGA from 

a host computer using the Altera Programmer. Second, the FPGA is programmed using the built-

in processor, referred to as a Hard Processor System, or HPS running a Linux OS with a 

command line interface, Figure 39. The third and final configuration mode is similar to the 

second, in the sense that the FPGA is once again programmed via the HPS; however this mode is 

set when using much larger Linux OS images that feature desktop environments as opposed to 

the CLI. (Terasic, 2016) 

   

Figure 39: MSEL Position for Linux with CLI 

 For this experiment, the second configuration mode was chosen, using the DE1-SoC 

Linux Console image that was burned onto an external flash memory card.  

 Connection to the board was established using a USB port through a serial connection 

managed by the PuTTY software, Figure 40. Once powered on, the system boots the Linux OS 

and can be controlled via the serial connection.  
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Figure 40: Serial Connection Through PuTTY 

 The Linux image of the DE1-SoC comes with two demo applications preinstalled. While 

not in any way compute intensive, these two applications serve as a straightforward method to 

test the functionality of the OpenCL environment. 

 Prior to execution, the user must initiate the OpenCL environment, loading the OpenCL 

driver and the environment variables pointing to the OpenCL run-time library on the system. 

This is done via a pre-installed script called “init_opencl.sh”, Figure 41. 

 

Figure 41: Contents of init_opencl.sh Script 
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 Before executing the OpenCL application of choice, the FPGA must be programmed with 

the binary file generated by the AOC for said application. The AOCL is invoked for this purpose 

using the command “aocl program /dev/acl0 application.aocx” where acl0 is the targeted FPGA 

and the .aocx file is the used binary. Following this step, the targeted host executable can be run 

for OpenCL execution, Figure 42. (Terasic, 2016) 

 

Figure 42: FPGA Programming and Vector Addition Demo 

 Having determined that the device functions as expected, the next step is installing the 

relevant development hardware on the PC. 

 The AOCL is bundled together with the Quartus software, in this case version 14.1, 

which is recommended for the DE1-SoC. Installation of the software is straightforward and will 

not be detailed in this work. Once the software has been installed, the user has to set the 

environmental variables for the AOCL. These variables point to the AOCL installation and the 

board support package for the targeted FPGA. 

 Applications are designed in the same manner as CPU and GPU ones, using, in this case, 

the Visual Studio environment, however compilation of the two required files, host and kernel, is 

significantly different.  
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 The AOC is used to turn the kernel code into a hardware configuration file, through the 

command-line interface. The practice is straightforward however the compilation process is 

resource demanding and time consuming. The compilation process will be detailed in the 

following section. 

 The host-code needs to be compiled for the ARM processor, as a Linux executable. 

Fortunately, the Altera software comes with an embedded Linux environment through which a 

Linux executable can be cross-compiled on Windows by using the MAKE software.  

6.4  Benchmark Application 

 The chosen benchmarking application for the SoC board was once again based on Matrix 

Multiplication. However, rather than modifying the existing CPU/GPU application, this 

implementation was based on a similar design offered by Altera used in benchmarking much 

larger FPGA devices. (Altera, 2015) 

Because of this, the design had to be reduced in size and complexity in order to fit onto 

the FPGA. This design change was similar to the batch method used in the FFT implementation; 

however, since it affects the kernel code as well as the host, it cannot be altered at run-time as it 

is used in generating the hardware configuration binary. As such, two variations of the 

application were created, one based on block sizes of 16 and 8. The initial version of the 

application, with a block size of 64, reported an estimated resource usage that exceeded device 

capabilities, seen in Figure 43. 
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Figure 43: Usage Estimation Report for block 64 

 

Figure 44: Usage Estimation Report for block 16 

 

 The application included accuracy testing, where the application was executed on the 

CPU after FPGA execution and results were compared, Figure 45. This feature was used in 

initial execution of the application, on small matrix numbers however it was removed from the 

benchmark version because the embedded CPU was struggling to complete the larger matrix size 

executions.  
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Figure 45: Reference Computation Executed on the ARM CPU 

 Application complexity was further reduced by removing the built-in options feature and 

replacing it with a single external parameter which determined matrix size, in tone with the 

previous Matrix Multiplication application.  

 The application was initially created to target multiple FPGA devices at the same time, 

through the introduction of “for” loops in the host code segment, this functionality was 

maintained, to be used in future work.  

6.5  Execution 

The fully compiled application, composed of two files, the Linux executable and 

hardware configuration binary were transferred onto the SoC board via flash storage. 

Programming the FPGA with the Matrix Multiplication hardware binary was done first, as it 

would remain unchanged until the device was powered down, or a different binary was 

programmed in its place. The Linux executable was ran through a script calling it with different 
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external parameters for matrix sizes multiple time, with the resulting output being written to a 

separate file for interpreting. Execution results are shown in Table 10. 

Table 10: FPGA Execution Time 

Execution Time ms Workgroup Partition 

Matrix Size 
Block Size 16 
Workgroup 8 

Block Size 8 
Workgroup 4 

Block Size 8 
Workgroup 2 

512 32.38 30.73  58.51 

1024 265.91 245.671 466.84 

2048 2,083.45 3,830.81 4,041.5 

4096 16,608.05 57,556.30 45,898.44 

5600 41,888.51 49,716.25 76,312.36 

 

It can be observed that overall, higher block sizes lead to increased performance. 

However for very small values the much smaller block size proves to be faster due to less 

overhead communication. For the above implementations, block size 16 exploited the FPGA 

resources to the fullest of their potential. The other two implementations used around 50%, and 

30% of available logic. The performance doesn’t however seem tied to the amount of resources 

used, leading to the assumption that there is still optimization work to be done to the compiler. 

The execution time noted in red appears to represent a bug that only affects the 4096 

value on block size 8, workgroup size 4. For unknown reasons, performance on that matrix size 

is heavily impacted. The values immediately above and below it (4088/4104) both execute in ½ 

of the time shown above. Debugging of the implementation in order to determine the actual 

cause of the impacted performance was not executed due to time constraints. 
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 Unfortunately there is not enough memory on the FPGA device to execute matrix sizes of 

8192x8192. The execution duration of the FPGA execution is up to 20 times faster than the CPU 

execution, however it does not match GPU performance. However, this device was not intended 

for computational performance, but rather functional testing and experimentation. It is also worth 

mentioning that as a SoC solution, the power consumption is greatly reduced, most likely leading 

to equivalent or better performance than the two other architectures when compared in terms of 

computational power per watt.  

 A preliminary measurement of the SoC power consumption was executed during the 

block 16 executions, in order to provide a stepping-stone for further work in this area. These 

measurements are showcased below. 

 

Figure 46: SoC Power Consumption 
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6.6  Conclusion 

 It is shown in this chapter that FPGA based development of OpenCL applications is not 

only possible, but also a viable solution for achieving computational speed-up for applications 

that can benefit from heavy parallelisation. The application development when using the 

OpenCL framework was shown to be both straightforward, and highly similar to applications 

targeting other architectures in OpenCL. Based on the author’s previous experience with HDLs, 

using the OpenCL framework for developing FPGA applications is much less time-consuming, 

while also enabling for rapid and straightforward improvements to the developed application at 

any point after development. The OpenCL framework also opens up the FPGA architecture to a 

much larger pool of developers since it does not involve a tedious learning process for HDLs.  
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Chapter 7: Further Research 

A continuation of this work could seek to include the newest introduced architecture in 

high-performance computing, that of the many-core systems, like the Intel Xeon-Phi. Systems 

such as this one, that include a high number of compute units could greatly benefit from the 

OpenCL framework.  

During this work, a number of applications were created for system benchmark across 

multiple architectures, and although these applications were based on similar algorithms, they 

existed as separate entities. While this allowed for a better understanding of how each 

architecture functions, creating a single application, containing functionality for each entity type, 

either individually or together, should be the next goal within this topic. Work toward this goal 

could also determine the best approach to heterogeneous programming, creating a single kernel 

code to be compiled at run-time or multiple binary files, one for each architecture type or sub-

type. 

All applications used in this work were based on the OpenCL 1.2 version; however the 

latest version is 2.2.  It is expected that utilizing these newer standards would increase 

performance while decreasing complexity and development time. However, due to the slow 

adoption of these standards by manufacturers, OpenCL is fragmented across devices, similar to 

the fragmentation of the Android OS platform. As such developing applications based on 

standards that are not yet supported by all targeted architectures seems counterintuitive. Future 

research could determine whether the benefits of using newer OpenCL standards outweigh the 

cons.  
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The University of Huddersfield, like many other institutions like it, makes use of a 

number of Digital Signal Processor devices as teaching tools. Since DSPs are advertised as 

specialized accelerators that OpenCL can target, attempts could be made at determining the 

computational benefits of integrating them as part of more robust heterogeneous systems.  

The power measurements presented within this work are very limited in both scale and 

complexity; however more in-depth research is needed to determine the actual speed-up of using 

FPGA devices as computational accelerators alongside CPUs and GPUs. To this end, a much 

more comprehensive test environment needs to be used, one that can accurately measure the 

power usage of both the accelerator device and the complete system required to operate it. 

 This work has shown that FPGA devices are able to match and surpass CPU devices, 

while requiring a fraction of the power and storage space. Based on the findings of this work, 

and the initial power measurements, a future study was planned, to determine the feasibility of 

implementing FPGA devices as part of the High-Performance Computing environment. This 

could be either as extensions to current hardware, by integrating PCI-E devices, or as separate 

stand-alone resources in the form of a SoC FPGA resource pool.  
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Chapter 8: Summary and Conclusions 

This work focused on investigating the efficiency of the OpenCL development 

framework and environment in conjunction with heterogeneous systems, mainly, exploiting the 

massively parallel architectures of GPUs, FPGAs or High-Throughput Systems. The work 

covered the development of OpenCL applications aimed at benchmarking the performance of 

accelerators within heterogeneous systems, portability across different devices and platforms, 

and design methodologies. It was shown through several different implementations and test-

benches that through the OpenCL framework a large number of specialised resources can be 

exploited to increase computational performance without significant development time trade-

offs.  

Another outcome of the project has been the integration of OpenCL based functionality 

within the High-Throughput Computing environment at the University of Huddersfield, 

exploiting already existing hardware for General Purpose GPU computing. Exposing the 

dormant resources available in the HTCondor pool offered not only increased system 

performance but also facilitated the expansion of the user and application base by allowing for 

the introduction of much more complex applications within the HTCondor pool. Resulting 

evidence from this work has shown that the OpenCL platform offers a reliable solution for 

targeting large, heterogeneous systems, such as those in HTCondor. Platform portability was 

demonstrated through the seamless execution of the applications across the varied architectures 

present in the resource pool. Platform specific optimisations are not omitted; their 

implementation however is left to the judgement of the user/developer. The results of this 
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investigation lead to a peer-reviewed publication at the Emerging Technologies conference in 

Barcelona. One of the main discussion points during the conference was software sustainability, 

where interest was shown in both the OpenCL framework, for its platform portability, and the 

HTCondor for its use as a pool manager for heterogeneous dedicated resources. 

The investigation also focused on the FPGA based OpenCL SDK in order to determine 

the effectiveness of OpenCL programming in reconfigurable computing, the portability of 

OpenCL applications from CPU/GPU to FPGA, and the development effort involved in setting-

up FPGA based OpenCL applications. Although limited in size and scope, results have 

nonetheless shown that the OpenCL framework has reached the level of maturity needed to allow 

for the implementation of applications targeting FPGAs. Resulting output shows the potential of 

FPGAs; however more in-depth research is required to determine the performance gain of the 

system, not just from a speed-up perspective but also by investigating the power consumption, 

acquirement cost, and sustainability. 

Three research questions were posed in the introduction chapter; the aim of this work has 

been to offer answers, both through literature research and experimental findings.  

The first of these questions was related to the maturity of heterogeneous systems for use 

in computational tasks. It is concluded, based on reviewed literature of current work done in the 

field and demonstrated performance increase in specialised accelerators, that heterogeneous 

computing has reached a sufficient maturity as to offer a promising environment for the 

computational environment, and warrant a change traditional CPU based computing. 

The second questions regarded the feasibility of integrating heterogeneous systems in 

HPC resources through the OpenCL framework. Based on the successful implementation of the 
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HTCondor upgrade, the obtained benchmarking data, and the resulting publication, it is inferred 

that the OpenCL framework is a viable solution for the integration of heterogeneous computing 

resources in HPC clusters.  

 The third research question, and topic, sought to determine the usability of the OpenCL 

framework in conjunction with FPGA architectures for the development of computing 

applications. It is evidenced, through both research into the functionality of the Altera OpenCL 

SDK, and the benchmarking implementation on the DE1-SoC device that the OpenCL 

heterogeneous platform can be successfully used to implement FPGA specific computational 

applications. The FPGA device used in this work is shown to be faster than the investigated CPU 

units, however not on par with the GPU devices. It is assumed that once power efficiency is 

introduced as a component of the system benchmark, the performance gain associated with 

FPGA usage will become more pertinent.  

 Based on the research, results, findings, and outcomes of the above work, it is concluded 

that all original aims and objectives have been achieved, and that a solid groundwork for future 

research and development, especially on the topic of FPGA based computational acceleration, 

has been established.  
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Chapter 10: Appendix 

List of files included on portable medium 

1. OpenCL Device Detection C Code/Executable( improved version); 

2. Matrix Multiplication Host Code/Executable ( using external parameters); 

3. Matrix Multiplication Host Code/Executable ( using user prompted commands); 

4. Matrix Multiplication Kernel Code; 

5. FFT Client Source, as retrieved from (AMD, 2016); 

6. FFT Client Compiled(with batch script); 

7. FPGA Matrix Multiplication Host Code(with modifications); 

8. FPGA Matrix Multiplication Kernel Code (Altera, 2015); 

9. FPGA Matrix Multiplication Compiled Files. 

N.B: The Matrix Multiplication kernel code (4) is also present with the executable in (2 & 3). 


