
University of Huddersfield Repository

Dafinoiu, A.A.

Investigation of heterogeneous computing through novel parallel programming platforms

Original Citation

Dafinoiu, A.A. (2016) Investigation of heterogeneous computing through novel parallel
programming platforms. Masters thesis, University of Huddersfield.

This version is available at http://eprints.hud.ac.uk/id/eprint/31698/

The University Repository is a digital collection of the research output of the
University, available on Open Access. Copyright and Moral Rights for the items
on this site are retained by the individual author and/or other copyright owners.
Users may access full items free of charge; copies of full text items generally
can be reproduced, displayed or performed and given to third parties in any
format or medium for personal research or study, educational or not-for-profit
purposes without prior permission or charge, provided:

• The authors, title and full bibliographic details is credited in any copy;
• A hyperlink and/or URL is included for the original metadata page; and
• The content is not changed in any way.

For more information, including our policy and submission procedure, please
contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/

 INVESTIGATION OF HETEROGENEOUS COMPUTING

THROUGH NOVEL PARALLEL PROGRAMMING PLATFORMS

ANDREI-ALEXANDRU DAFINOIU

A thesis submitted to the University of Huddersfield

in partial fulfilment of the requirements for

the degree of Masters of Science by Research

Supervised by Dr. Violeta Holmes

The University of Huddersfield

September 2016

Investigation of Heterogeneous Computing 2

2

Abstract

 The computational landscape is dominated by the use of a very high number of CPU

resources; this has however provided diminishing returns in recent years, pushing for a paradigm

shift in the choice for computational systems.

The following work was aimed at determining the maturity of heterogeneous computer

systems in terms of computational performance and their possible integration within High-

Performance Computing resources through the use of the OpenCL parallel programming

platform.

An introduction is given in the existing hardware architectures targeted by the OpenCL

platform, existing literature regarding the integration of heterogeneous systems for

computational applications, and the OpenCL platform as a development environment.

A number of applications are developed to benchmark the capabilities of the framework

in multi-architecture environments, the results of which show up to 160 times performance gain

when targeting GPU architectures, as opposed to CPU, for matrix multiplication algorithms.

Based on this, an extensive test-bench is designed targeting the HTCondor resource pool

for a Fast-Fourier Transform application. Results from these machines once again showed a

significant performance increase against CPU systems, while also enabling the expansion of the

HTCondor system and the uncovering of 30 Teraflops of dormant computing power.

The FPGA architecture is also investigated for its potential in OpenCL computational

acceleration, with a focus on the platforms ease of use. It is determined that the framework is

mature enough for FPGA application development.

Investigation of Heterogeneous Computing 3

3

Acknowledgements

 I would like to express my thanks to Dr. Violeta Holmes, and the High-Performance

Computing Research Group for their wisdom, support, and friendship. Their input has been

invaluable to me during my time at the University of Huddersfield, and without them this work

would have not been completed on time.

Investigation of Heterogeneous Computing 4

4

Table of Contents

Chapter 1: Introduction ... 8

1.1 Heterogeneous Computing.. 11
1.2 The OpenCL heterogeneous framework ... 12
1.3 Reconfigurable Computing ... 13
1.4 Methodology ... 17

1.5 Research Questions: .. 18

Chapter 2: Literature Review .. 20

2.1 Many-Core Architectures.. 20
2.2 Graphical Processing Units ... 21

2.3 Field-Programmable Gate Arrays ... 22
2.4 Existing Applications .. 23

2.4.1 Radar Processing: FPGAs or GPUs? ... 23

2.4.2 A Comparison Study on Implementing Optical Flow and Digital Communications on

FPGAs and GPUs ... 24

2.4.3 Performance Comparison of GPU, DSP and FPGA implementations of image

processing and computer vision algorithms in embedded systems 25
2.4.4 Accelerating High-Performance Computing With FPGAs.. 26

2.4.5 OpenCL: A Parallel Programming Standard for Heterogeneous Computing Systems 28
2.4.6 A Comprehensive Performance Comparison of CUDA and OpenCL 29

2.5 Conclusion .. 29

Chapter 3: The OpenCL Platform ... 31

3.1 Programming Model ... 32

3.1.1 Environment Setup... 33
3.1.2 Host Initialization... 34

3.1.3 Kernel Setup... 35
3.1.4 Execution ... 36
3.1.5 Clean-up ... 37

3.2 On-going Improvements ... 37

3.2.1 Shared Virtual Memory ... 37

3.2.2 Device Kernel Enqueue ... 38
3.2.3 Standard Portable Intermediate Representation (SPIR-V) .. 39

3.3 Conclusion .. 40

Chapter 4: OpenCL Multi-Architecture Application Development ... 41

4.1 OpenCL System Detection ... 42
4.2 Application Design ... 43

4.2.1 Host Code... 44

Investigation of Heterogeneous Computing 5

5

4.2.2 Kernel Code ... 49

4.3 Test Bench Environment... 51

4.3.1 System Specifications .. 52

4.4 Application Execution .. 53

4.4.1 System I ... 54
4.4.2 System II .. 56
4.4.3 System III ... 58
4.4.4 System IV... 61

4.5 Conclusions ... 61

Chapter 5: OpenCL framework implementation over HTCondor .. 63

5.1 Fast Fourier Transforms .. 67
5.2 Benchmark Execution ... 70
5.3 HTCondor Related Scripts .. 75

5.3.1 Condor Individual Unit Execution ... 75
5.3.2 Individual Machine Benchmarking.. 76

5.3.3 Data sorting and processing ... 77

Chapter 6: OpenCL FPGA Acceleration .. 79

6.1 Hardware Description Language .. 80
6.2 Altera SDK for OpenCL ... 81

6.2.1 Altera Offline Compiler ... 82
6.2.2 Application porting .. 84

6.3 DE1 System-on-Chip .. 85

6.3.1 Setup .. 86

6.4 Benchmark Application .. 90

6.5 Execution .. 92

6.6 Conclusion .. 95

Chapter 7: Further Research ... 96
Chapter 8: Summary and Conclusions .. 98
Chapter 9: References ... 101

Chapter 10: Appendix ... 105

Final Word Count: 17,945

Investigation of Heterogeneous Computing 6

6

List of Figures

Figure 1: CPU Frequency Evolution (GHz) ... 9
Figure 2: Intel CPU Architecture Size Evolution (Intel) .. 10

Figure 3: Host and Various Accelerators (CMSoft) ... 12
Figure 4: FPGA Basic Outline (Mazsola) ... 14
Figure 5: C to RTL Converter Using HLS (Aldec) .. 16
Figure 6: Many-Core Processor architecture (Embedded.com) ... 20
Figure 7: CPU - GPU Core Count .. 22

Figure 8: OpenCL Programming Flow ... 33

Figure 9: Excerpt of Device Detection Application ... 42

Figure 10: Device Report for Development PC .. 43
Figure 11: Memory Buffer Allocation .. 44
Figure 12: Function for Matrix Element Allocation ... 45
Figure 13: Identifying Available Platforms. ... 45

Figure 14: Device Cycle Loop .. 46
Figure 15: CPU/GPU Decision Point ... 46
Figure 16: Command Queue Initialization ... 47

Figure 17: Building Program Executable ... 47
Figure 18: Allocating Device Memory ... 47

Figure 19: Kernel Argument Passing .. 48
Figure 20: Command Enqueue ... 48

Figure 21: Data Retrieval and Profiling .. 49
Figure 22: Memory Clearing .. 49

Figure 23: OpenCL Kernel Code .. 50
Figure 24: External Argument Code Snippet.. 51
Figure 25: CPU Matrix Multiplication ... 53

Figure 26: GPU Matrix Multiplication ... 54
Figure 27: Condensed Path of HTCondor Access .. 65

Figure 28: FFT Interlaced Decomposition .. 68
Figure 29: FFT Butterfly Calculation ... 69
Figure 30: CPU Benchmark .. 71
Figure 31: GPU FFT Performance .. 72
Figure 32: GPU Cluster Comparison .. 73

Figure 33: Shell Script for Execution ... 76

Figure 34: Fragment of Windows Batch File ... 77

Figure 35: Python Script for Data Sorting .. 78
Figure 36: AOC Flowchart ... 83
Figure 37: Custom Memory Region Targeting ... 85
Figure 38: DE1 SoC Development Board .. 86
Figure 39: MSEL Position for Linux with CLI .. 87

Figure 40: Serial Connection Through PuTTY .. 88
Figure 41: Contents of init_opencl.sh Script .. 88

Investigation of Heterogeneous Computing 7

7

Figure 42: FPGA Programming and Vector Addition Demo ... 89
Figure 43: Usage Estimation Report for block 64 .. 91
Figure 44: Usage Estimation Report for block 16 .. 91
Figure 45: Reference Computation Executed on the ARM CPU ... 92
Figure 46: SoC Power Consumption .. 94

List of Tables

Table 1: System Specifications ... 52
Table 2: CPU Execution System I .. 54

Table 3: GPU Execution System I .. 55
Table 4: GPU Execution System II ... 57
Table 5: CPU Execution System III .. 59
Table 6: GPU Execution System III ... 59

Table 7: GPU Speed-up Against Baseline .. 60
Table 8: CPU Execution System IV ... 61

Table 9: GPU Landscape .. 67
Table 10: FPGA Execution Time ... 93

Investigation of Heterogeneous Computing 8

8

Chapter 1: Introduction

 Generally, the world of computing has accessed two methods of manipulating and

interpreting information; firstly, hard-coded designs in the form of ASICs, where data-paths and

algorithms are fixed in hardware, resulting in high performance applications that cannot be

altered after creation, accomplishing only the task they were designed for. And secondly

programmable systems, (meaning CPUs, and more recently GPUs), where algorithms are

implemented after production via the use of software, the data path in a programmable system is

also fixed, however it implements primitive generics so that it may be used in multiple

algorithms, resulting in a higher degree of reusability at the cost of performance. (Altera, 2007)

 Fixed implementations like the ASIC are so complex in terms of design and manufacture

that the user base for such devices is limited to companies that can afford the time and resource

investment. Also with technology moving forward so fast, the overall production time of such a

device might end up being longer than the time it takes for new generations of hardware to be

created, making ASICs a very niche market. Because of this, the majority of applications use

programmable systems based on CPU architecture.

 As requirements grow, programmable devices need to improve in order to keep up with

the computational demands of users. This is done, generally through three different trends. The

first of these trends is the frequency scaling of said systems. However, higher frequencies require

higher voltage, making it more difficult to increase frequency without also increasing power

consumption. This issue is known as the “power wall” and it refers to the point where increasing

frequency would require so much more power that it becomes impractical. (Schaller, 1997)

Investigation of Heterogeneous Computing 9

9

It can be observed in Figure 1 that CPU clock frequency has not seen any major improvements

since 2004, and had actually dropped when vendors decided to embrace multi-core architectures.

Figure 1: CPU Frequency Evolution (GHz)

A second trend involved reducing the size of transistors in programmable systems, thus

increasing the amount of components fitted on the same amount of space. This trend is governed

by Moore’s Law, an observation stating that the number of transistors in an IC doubles

approximately every two years. The observation has stood the test of time since 1975; however

the development pace of this trend is also diminishing, with smaller sized transistors taking

increasingly more time to develop. Also, this trend is reaching its physical limits, with current

technologies offering 14nm chips. The expected end-date of Moore’s Law is set for 2025.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

Intel

AMD

Investigation of Heterogeneous Computing 10

10

Figure 2: Intel CPU Architecture Size Evolution (Intel)

Taken together, the above two are closely related in limiting CPU frequency, since

cooling capabilities are not scaling at a fast enough rate to allow for the maintaining of high

frequencies in more dense systems. This has led to a stagnation, and even decrease, in CPU

frequency during the last decade.

The third trend used to improve performance relied on the development of more complex

hardware, capable of converting the sequential logic of programming into instruction-level

parallelism. Also, because, in software programming, the memory latency of programs is not

considered, this task falls on hardware once again, meaning that larger chunks of hardware must

be dedicated to managing memory, and extracting parallelism from the code. Over time, the

improvements to hardware in programmable systems have seen diminishing returns. (Schaller,

1997)

One attempt to avoid the issues described above was the emergence of Multi-Core

processing which involves utilizing more compute units running at slower clock speeds and

parallelising the process as to exploit multiple nodes at the same time. To offer an example, the

Investigation of Heterogeneous Computing 11

11

Intel Pentium 570J of 2004 offered a max clock speed of 3.8 GHz and a single core, and the

current generation Intel i7-6700k offers a max clock speed of 4.2 GHz with four cores.

Since the benefits of following the three aforementioned trends are diminishing, emphasis

is shifted towards creating parallelism at code level instead of relying on hardware to extract it at

instruction-level. This means that the developer is tasked with defining parallelism and that the

hardware can focus more on the computation and less on interpretation. (Garland & al., 2008)

1.1 Heterogeneous Computing

 Any system that uses more than one processor type to handle computational requirement

is referred to as a heterogeneous system. The addition of specialized coprocessor to accelerate

specific computational tasks as opposed to simply increasing the number of processors is the

“definition” of heterogeneous computing. (Kalinov, Lastovetsky, & Robert, 2005)

 Heterogeneous systems have found their way into every corner of everyday life, with the

CPU-GPU combination being the most common. These are today found in the most so-called

“smart” devices, such as phones, tablets or watches. And although devices such as these were not

designed with the intent to benefit computing, recent work by the Mont-Blanc project has shown

that embedded and mobile devices can be used to power a fully functional supercomputer, with

the aim of creating a supercomputing environment that is more energy efficient. (Perez, Bosque,

Stafford, & Beivide, 2016)

Investigation of Heterogeneous Computing 12

12

1.2 The OpenCL heterogeneous framework

 OpenCL is a development framework that is platform-independent and emphasises

parallel computing. This framework is compatible with many platforms, with commercial

suppliers such as Intel, NVidia, and AMD all offering support for OpenCL on their hardware.

OpenCL is a programming language derived from ISO C99 that adds API in order to

extract parallelism from an otherwise serial programming language. This allows OpenCL to

expand the number of applications that can run on an FPGA, and opening it up to a variety of

programmers that had no way of using it before. (Stone, Gohara, & Shi, 2010)

Figure 3: Host and Various Accelerators (CMSoft)

The standard use model for OpenCL is split in two parts:

Investigation of Heterogeneous Computing 13

13

The Host code; a sequential C code written with OpenCL API required to communicate

with the chosen platform. This code is compiled into an executable that gets ran on the host

CPU, and is responsible for controlling the entire system, from start to finish.

 The Kernels; each function ran on the platform is written as a kernel, using OpenCL

syntax. This then gets compiled using the SDK offered by the manufacturer of the platform,

generating a second executable. The kernel executable is used by the host to programme the

platform during run-time.

1.3 Reconfigurable Computing

The term reconfigurable computing refers to the act of performing computations via the

use of spatially (field) programmable architectures such as FPGAs. This merges a multitude of

disciplines, including hardware design, digital signal processing, computer aided design, and

sequential and parallel computing. Over the past 25 years, a community dedicated to building

and programming these new systems has emerged, and the foundation for large scale

reconfigurable computing is being laid.

The FPGA became an attractive solution in the computing world because dedicated

hardware was always much faster than its software counterpart. However due to the high design

cost and development time of ASIC solutions made it viable only for a select few. Moore's Law

also meant that in some cases a faster microprocessor was created before the hard-coded solution

meant to outperform it was implemented. FPGAs offered similar hardware specific

computational speeds without the development and manufacturing costs or lead times of

traditional ASIC solutions. (Tessier, Pocek, & DeHon, 2015)

Investigation of Heterogeneous Computing 14

14

Figure 4: FPGA Basic Outline (Mazsola)

While the FPGA, through its massive parallel computation capabilities, flexibility, and

low energy consumption, provides opportunities for computational acceleration, it also comes

with an exponential increase in development time. CPUs and GPUs are programmed using high-

level languages, C and CUDA as an example, which lowers the development time. In contrast,

FPGA are programmed in HDL, which in software development terms, is similar to the

Assembler language, a low-level language that makes development more time-consuming.

FPGA developers also need to take into account hardware design, RTL programming and timing

optimisations. This, in turn, requires domain experience for optimal design and implementation.

 In order to alleviate some of the barriers that prevent FPGA based computing to take root

multiple tools have been developed to reduce development time by allowing users to write code

in high-level languages, such as C or Java, and having it converted into HDL.

It has been shown that FPGAs offer similar computational power to GPUs in regards to

optical flow algorithms, however the development time of such applications is 12 times slower

on the FPGA than it is on a GPU. The difference in development time was attributed to the

Investigation of Heterogeneous Computing 15

15

complexity of hardware design and simulation which use the process of “edit/compile/simulate

followed by edit/synthesize/place-and-route/execute” as opposed to the software development

which requires only an “edit/compile/execute” process. However, taking into account the lower

power consumption of the FPGA and its higher affinity to parallelism, it can be assumed that

FPGAs have the ability to perform better than GPUs, however the trade-off in development time

make it a more situational solution. As such, the introduction of OpenCL development could

bring down the development time of such applications. (Bodily, Nelson, Wei, Lee, & Chase, A

Comparison Study on Implementing Optical Flow and Digital Communications on FPGAs and

GPUs, 2010)

 In recent years, interest has changed from using HDL to HLS, standing for High-Level

Synthesis, an approach to producing logic circuits that avoids using HDL when possible. This

means that HLS tools convert a software based design to a circuit made up of control logic and

data path. Parallelism in HLS is achieved through scheduling; multiple instructions are

performed during the same clock cycle. This, however, is not the best approach when using

FPGAs. These devices benefit a lot from their ability to manage pipelined applications, however

current programming languages, like C, are unable to express pipelining and as such, the full

potential of the FPGA is not unlocked. Also, HLS is not traditionally used to create an entire

system, only small parts of it; this means that the need for a competent HDL developer is not

bypassed.

Investigation of Heterogeneous Computing 16

16

Figure 5: C to RTL Converter Using HLS (Aldec)

 OpenCL addresses most of the issues posed by HLS by using a host connected to

multiple kernels. Each kernel runs independently of the other and the host manages

communications. The host part of the system sets up the data to be processed and runs threads

on a kernel. Threads are executed by “…reading arguments, loading data from global memory,

processing it, and storing the results in global memory.” By controlling the OpenCL application

through the host file, the designer is able to avoid going into hardware design, removing the need

for experience in that domain and allowing for faster development times.

 A recent work by Altera Corporation showed that OpenCL based implementations

provided comparable if not better results than the HDL-coded alternatives, with much lower

development times. This suggests that OpenCL could allow for the development of high-quality

computational solutions based on FPGAs much faster than traditional methods. (Altera, 2011)

Investigation of Heterogeneous Computing 17

17

1.4 Methodology

To determine the efficiency of heterogeneous computing, using an OpenCL based

programming model, several test-benches will be designed. These will be based on algorithms or

compute-heavy tasks that can benefit from the increased native parallelism available in

heterogeneous systems. Systems, such as these, would allow for the breakdown of operations

between resources in order to maximise performance, for example, assigning serial tasks to

CPUs and parallel tasks to GPUs.

These implementations will then be compared with computing solutions offered on the

existing systems, which utilise CPU based computation, in order to determine whether

heterogeneous computing provides a speed-up factor worthy of consideration. Comparison will

not be made solely on runtime speed-up but also on development time, development complexity

and power-usage.

An attempt will be made to improve the performance of the High Throughput Computing

environment at the University of Huddersfield by taking advantage of the readily available

General-Purpose GPUs in the HTCondor pool. This diverse ecosystem spans multiple computer

architectures, various operating systems, and a significant variation of compute units, varying

from low end CPUs to high-end GPGPUs. Currently, the university exploits the idle CPU time of

available machines by assigning them computational tasks, however the GPU resources in these

systems are unused. No configuration exists to allow for the allocation of tasks to the GPU

component of available computers, and as such their capabilities are wasted during their idle

periods.

Investigation of Heterogeneous Computing 18

18

With OpenCL being a platform independent tool, a single implementation is developed to

exploit the entire heterogeneous system pool, and HTCondor offers a means to access it. While

performance is not inherently sought after in HTC, the ability to accelerate computing without

requiring hardware changes, or physical intervention, is still desirable and increases the CPU

hours generated by the system. It also enables researchers to use more complex applications that

are would normally be too time-consuming when ran on CPUs alone.

A third study will investigate the use of OpenCL for developing FPGA applications

aimed at computational applications. The aim is to determine the efficiency of OpenCL design as

opposed to traditional HDL design in terms of development time, difficulty of porting

applications from CPU to FPGA, and the speed-up obtained when using reconfigurable

computing.

1.5 Research Questions:

 Does heterogeneous computing provide enough benefits to warrant a change from

traditional systems?

 Is the OpenCL heterogeneous platform mature enough to encourage a shift in

development environment used for High-Performance Computing?

 Can FPGAs be used to accelerate computing using the OpenCL platform?

Investigation of Heterogeneous Computing 19

19

The remainder of this thesis is structured as follows. Chapter II offers insight into the

different architectures types that can be exploited for computing purposes, and a review of

existing work done in this area. Chapter III introduces the OpenCL platform with a focus on the

programming model and usage. Chapter IV covers the implementation of an OpenCL benchmark

for use across CPUs and GPUs, with a detailed design process and resulting performance.

Chapter V covers the implementation of a different OpenCL benchmark, over a HPC resource

composed of hundreds of machines. Chapter VI presents the FPGA related benchmark design

and execution, while also discussing the SDK offered by the manufacturer. Chapter VII

discusses further research topics in this subject area. Chapter VIII represents the conclusion of

this thesis.

Investigation of Heterogeneous Computing 20

20

Chapter 2: Literature Review

 As introduced above, heterogeneous computing refers to the use of multiple types of

processors to accelerate the execution of computations within a system. The following pages will

detail some of the existing accelerators used in conjunction with CPUs to improve performance.

2.1 Many-Core Architectures

 Due to the recent improvements in CPU architectures, the distinct line separating GPUs

from CPUs is becoming increasingly blurred. It is due to the emergence of Many-Core

architectures that previous boundaries need to be re-evaluated. Many-Core architectures are

systems which contain multiple CPU cores within a singular unit, allowing for heavier

parallelism at CPU level. This is different from simply connecting multiple CPUs together since

it offers much faster memory transfer speeds, and more complex optimisations for parallel

execution, at the expense of individual thread performance, and it is in this aspect that Many-

Core architectures are similar to GPUs.

Figure 6: Many-Core Processor architecture (Embedded.com)

Investigation of Heterogeneous Computing 21

21

 One such system is the Intel Xeon Phi, a coprocessor unit comprised of up to 72

specialized CPU cores that can be connected to a computer via a PCI-E bus. The Xeon Phi

functions, from a programming perspective, as a CPU. It is fully compatible with existing CPU

applications that exploit parallelism. The goal of these sorts of architectures is to offer GPU level

parallel performance without the inherent drawbacks of GPU based computational design and

programming, or the bottlenecks generated by off-chip data transfers. 23 of the top 500

supercomputers are based on the Xeon Phi architecture, including the former number one

supercomputer Tianhe-2, the current fastest supercomputer; Sunway TaihuLight also uses many-

core processors with 260 cores per unit. (Top500, 2016)

2.2 Graphical Processing Units

 The Graphical Processing Unit (GPU) is a specialized IC designed for rapid manipulation

of data, primarily used in computer graphics and image processing. The GPU, as architecture,

contains large amounts of parallel processors, which, while unable to match the frequency of a

CPU processor, have demonstrated superiority in tasks that involve parallelism, be it data or task

parallelism. However, among the major drawbacks of using GPU accelerators are, the difficulty

of programming parallel based applications with fundamentally different approaches to solving,

and, on a hardware level, the bottleneck resulting from the need to communicate with a host

CPU, that results in abysmal performance when there is limited data to be computed. (Owens,

2008)

 A GPU processor is specialized in the sense that it is designed with the following

considerations in mind:

Investigation of Heterogeneous Computing 22

22

1. Computational requirements are extensive;

2. Operations are massively parallel;

3. Latency is not as important as throughput;

Figure 7: CPU - GPU Core Count

 Constant advances in hardware and programming API’s for GPUs have led to an

explosion of GPU based computations, with 66 of the top 500 supercomputers being fitted with

GPU accelerators. (Top500, 2016)

2.3 Field-Programmable Gate Arrays

These devices present a combination of the hardware efficiency found in hard-coded

designs and the re-configurability of programmable systems. Initially developed for replacing

multiple transistor-transistor logic devices with a single device, the FPGA was used in

connecting a micro-controller to peripherals, interfacing devices, or managing memory banks. It

Investigation of Heterogeneous Computing 23

23

was designed as a low-cost prototyping solution, and as such was not considered for

computational acceleration. Following the fall in transistor costs, and with it the increase in

FPGA power, these devices gained ground in the field of verification, rapid prototyping and also

low-volume production where ASIC solutions were deemed impractical.

 The ever-growing costs of designing and masking ASICs have led to a higher demand for

FPGA solutions, increasing, in turn the interest in developing faster and stronger FPGAs.

(Altera, 2007)

2.4 Existing Applications

2.4.1 Radar Processing: FPGAs or GPUs?

 A white paper by the ALTERA Corporation that discusses the efficiency of FPGA usage

in floating-point operations with regards to their usage in radar systems. The reasoning behind

this investigation is that CPUs are unable to keep up the pace with current generation processing

requirements, and as such are the significant bottleneck in such systems. (Altera, 2013)

The idea of peak FLOP (Floating-Point Operations per Second) as a measure of

performance is discussed and dismissed since it represents an indication of the theoretical

maximum capability of the device rather than the actual performance in real-world applications.

The article then moves on to show that FPGAs are capable of outperforming GPUs when

working with small sized algorithms. One given example is the Fast Fourier Transform (FFT),

which in radar systems oscillates in length between 512 and 8,192, in general. In this case GPU

solutions are ineffective due to overhead and power usage, with FPGAs offering similar

computational speeds. The paper stats that GPUs become efficient solutions for FFTs that are

Investigation of Heterogeneous Computing 24

24

“[…] several hundred thousand points […]” in length. Based on this, the paper proposes

benchmarking solutions based on typical applications.

Following several algorithm based benchmarks, it is concluded that FPGAs can provide

lower latency and higher performance than processors; however the advantage of using FPGAs

is expected to increase dramatically with the introduction of HPC-optimized FPGAs.

2.4.2 A Comparison Study on Implementing Optical Flow and Digital

Communications on FPGAs and GPUs

 A study made in (2010) set out to determine the performance of both FPGAs and GPUs

in signal, and image processing applications. The article studies raw performance as well as

design and development effort for both platforms. (Bodily, Nelson, Wei, Lee, & Chase, A

comparison study on implementing optical flow and digital communications on FPGAs and

GPUs, 2010)

 Implementation of the FPGA system was done using a number of readily available IP

cores, which limited the system clock rate, and resulted in raw performance approximately 4

times slower than the GPU solution while also having a much higher development effort. The

paper also introduces design enhancements for the FPGA that would, in theory, bring the

computational performance to values similar to those generated by the GPU.

 The study found that while the GPU solution consumed around 200-300W of power, the

FPGA consumption bordered on 10W. This allows for FPGAs to be implemented in embedded

systems applications where power constraints exist. In terms of speed, the GPU outperformed the

Investigation of Heterogeneous Computing 25

25

FPGA, however it required large data block sizes to do so, this in term generated large latency

issues that aren’t encountered in the FPGA implementation.

 The development time was approximated to by 12 times higher for the FPGA than the

GPU, due to the difficult nature of debugging HDL based applications.

2.4.3 Performance Comparison of GPU, DSP and FPGA implementations

of image processing and computer vision algorithms in embedded

systems

 A master’s thesis from 2013 studied the implementation of template matching on both

FPGAs and GPUs for use in embedded, real-time systems. (Fykse, 2013)

 Template matching is a process that requires multiple scans of the same image, for

different sizes and orientations of the sought object. For this reason the only viable solutions for

real-time applications are GPUs and FPGAs, due to their inherent parallelism.

 The author chose to implement the solution from scratch on the FPGA and by using an

open-source model for the GPU. Details are given on all steps of the design process, and FPGA

testing is done in software, through the use of test-benching, with accuracy determined via

comparison with a MATHLAB implementation. For the GPU implementation the OpenCV

library is used, allowing for fast and straightforward implementation of the desired system.

 When compared, from a development effort stand point, the author debates that even with

the use of Intellectual Property and HLS, the FPGA development is a lot more complicated than

the GPU one. There is mention of OpenCL as a means of facilitating GPU implementations

(however, due to the “age” of the paper, OpenCL is not considered for FPGA implementation).

Investigation of Heterogeneous Computing 26

26

In regards to power consumption, the FPGA far outclasses the GPU, however the FPGA

consumption is based on software approximation as hardware testing was not done. Finally, as a

pure performance comparison, the GPU performs slightly better than the FPGA at all but the

smallest of implementations. The thesis concludes that when faced with real-world projects the

higher performance of the GPU must be weighed against the lower power consumption of the

FPGA.

2.4.4 Accelerating High-Performance Computing With FPGAs

 Published in 2007, this white paper by Altera presents the improvements offered by

FPGAs as coprocessors in multiple High-Performance Computing applications. The introduction

shows that HPC requirements are increasing at a much faster rate than processors, creating a

technology gap. With Moore’s Law being outpaced by HPC requirements, the need for

specialized coprocessors was introduced. (Altera, 2007)

 From a business perspective, higher performance means higher profits (from lower time

to market, for example), and as such the need for performance that exceeds Moore’s Law is

understandable. As processor performance increase is slowing down, and development becomes

cost and energy inefficient, application-specific processors are introduced. Ethernet controllers,

Graphical processing units and Digital Signal Processors are a few of these solutions; however

they are not the answer to the technology gap introduced above, since they only address a single

aspect of the problem.

Investigation of Heterogeneous Computing 27

27

 The ideal coprocessor is proposed as providing “specific hardware acceleration for key

processes within the application”, being scalable in performance to keep up with demand and

having high-bandwidth, low-latency interfacing to the main processor and system memory.

 Apart from these, the paper introduces what it calls the” “four Ps” of HPC market needs:

performance, productivity, power, and price.” In short, performance refers to the acceleration of

the whole system, productivity refers to the ease of configuring the system to run existing

software, power refers to the consumption of such systems, which is generally linked to either

utilized space or dissipated heat; and finally price, which requires no explanation.

 As HPC is shifting away from Massively Parallel Processing toward cluster computing,

the coprocessor design needs to be easily integrated into commodity standard architectures “with

a cost similar to adding another node in the cluster.”

 The FPGA is introduced as a solution that satisfies all “four Ps” of HPC needs.

Examples are given of FPGA performance increase of standard CPU architectures ranging from

10x to 360x. From a productivity perspective, compilers that convert C to HDL are introduced,

thus removing the need for a user to have prior experience with FPGAs in order to use them. For

power, the inherent parallelism of FPGAs allow them to greatly reduce operating time compared

to sequential systems, resulting in higher performance at slower clocks, in turn resulting in lower

power consumption. The final “P”, price is also covered by the FPGA which has a cost

comparable to a CPU of similar specifications.

Investigation of Heterogeneous Computing 28

28

2.4.5 OpenCL: A Parallel Programming Standard for Heterogeneous

Computing Systems

 Published in 2010 this work is a very thorough introduction to the OpenCL framework,

covering the reasoning behind its development, its predecessors and describing the functionality

of the platform. (Stone, Gohara, & Shi, 2010)

 The shift toward heterogeneous computing created a need for software development

frameworks in the form of parallel programming languages and libraries. Several toolkits were

developed targeting multi-core processors and GPUs, namely, OpenMP, CUDA, and others.

OpenCL is described as an industry standard for parallel computing targeting heterogeneous

systems that, unlike its predecessors, targets a vast majority of hardware devices, and offers a

unified environment for development.

 The paper describes the OpenCL programming model, device management, development

facilitating features of the framework, and memory related aspects of programming. OpenCL is

described as targeting architectures that have, up to this point, been poorly supported by vendors

in terms of programming tools or libraries. Among the targeted architectures of OpenCL, this

work enumerates and expands on multi-core CPUs, GPUs and the IBM Cell processor.

 The work offers an in-depth description into the implementation of an application used in

bio-molecular science, presenting the different speed-up capabilities of the aforementioned

architectures.

Investigation of Heterogeneous Computing 29

29

2.4.6 A Comprehensive Performance Comparison of CUDA and OpenCL

 This 2011 conference paper investigates the performance of both CUDA and OpenCL

programming platforms for GPU execution of highly parallel algorithms. This work sets out to

determine if using OpenCL sacrifices performance for portability, and if so, identify the trade-

offs of using OpenCL as opposed to CUDA. (Fang, Varbanescu, & Sips, 2011)

 The work focuses on investigating the performance of CUDA and OpenCL applications

for 16 different applications from three different benchmark suites. The tests run initially in this

work reveal that CUDA outperforms OpenCL in almost all applications by a margin of up to

30%. However, this is due to the lack of optimizations in the OpenCL applications and the much

more mature complier in CUDA.

 It is further shown that when developing an application in OpenCL rather than porting it

from CUDA, equivalent performance is achieved. OpenCL portability is also investigated with

the use of an AMD GPU, an Intel CPU and a Cell/BE accelerator. This revealed that GPU

performance remains equivalent when porting but CPUs are limited by the small number of

available compute cores and accelerators are not mature enough to support most memory

requirements.

 The paper proposes the creation of an automated application for optimizing OpenCL

applications to different hardware devices and platforms.

2.5 Conclusion

 It is inferred, based on investigated literature, that no single device, or architecture, is

able to outperform the rest in every single aspect of computation, that there is no single fastest

Investigation of Heterogeneous Computing 30

30

device or fastest architecture. These two titles are highly dependent on the task at hand. As such,

it is proposed, that rather than being based on a single device, or architecture, a system able to

claim the title of fastest computational engine would be comprised of multiple devices and

architecture types. It is for this reason that OpenCL, which promises a platform independent

framework, for developing applications targeting heterogeneous systems, was selected as the

development environment for this work.

Investigation of Heterogeneous Computing 31

31

Chapter 3: The OpenCL Platform

 The Open Computing Language framework is a standard that offers a common

environment for developing and executing programs on heterogeneous systems, composed of

diverse computational devices, such as CPUs, GPUs, FPGAs, and DSPs. OpenCL was initially

developed by Apple, together with other large companies like AMD, IBM, NVIDIA, and Intel,

which together formed the Khronos Group. The first public release of the OpenCL standard was

in 2009 with OpenCL 1. (Stone, Gohara, & Shi, 2010)

 OpenCL provides a set of abstractions and programming APIs designed to allow a

developer to easily access multiple hardware architectures and devices. The framework defines

both a core set of features available to all compliant devices, such as memory management,

target device identification, data transfers, or execution queuing, and a more complex extension

mechanism that allows device vendors to expose features unique to individual devices, add

additional interfaces, or provide device specific optimizations. In doing this, OpenCL allows

users to efficiently port applications between different architectures, without losses in features or

accuracy.

 The framework can be used to exploit heterogeneous systems by allowing a user to match

execution segments to the computational hardware architecture most suited to carry them out. It

is up to the developer to decide how to divide the application between the various available

compute architectures in order to maximize performance.

Investigation of Heterogeneous Computing 32

32

3.1 Programming Model

 Since OpenCL is a platform-independent programming environment, OpenCL based

applications will run on compliant system regardless of available hardware. However, it is up the

developer to provision the application in such a way that it will execute on multiple device

architectures. For example, an application targeting GPU execution will fail to start unless a

GPU device is found within the system. As such, the user is expected to design the application

with regards to the system it will be executed on. However, this is not the only solution, as the

user is also able to design the application with features that allow for device selection, or that

prioritize execution on available accelerators. (Stone, Gohara, & Shi, 2010)

In terms of design, the user is expected to define the targeted computational devices,

memory allocations, data management and others within the control segment of the application,

namely the host file. The flow of operations during both design and execution can be divided

into 5 distinct sections, as evidenced below.

Investigation of Heterogeneous Computing 33

33

Figure 8: OpenCL Programming Flow

3.1.1 Environment Setup

• Identifying a platform;

A platform is composed of a single host and one or more OpenCL compliant devices. A

single computer may have multiple platforms, generally sharing the same host (unless multiple

CPUs are available), with each platform being linked to a different OpenCL implementation.

Investigation of Heterogeneous Computing 34

34

• Select device;

The device is the component that will run computation; multiple types can be called

(CPUs, GPUs, FPGAs, or other accelerators). With the inherent heterogeneity of OpenCL, a

variety of devices may be available at runtime. The application can be designed with a specific

architecture in mind, or setup in a way that allows the host to pick which of the available

architectures is the fastest.

3.1.2 Host Initialization

• Create Context;

The OpenCL context, created based on selected platform and devices, manages the

objects and resources available to the environment, where objects are allocations that enable

communication between the host and the compute devices, and allow for management of

memory, command queues, objects and execution. A context may contain one or more devices of

the same platform.

• Create command queue;

The command queue is the means through which the host sends commands to the device,

with each device requiring its own command queue. Commands include device memory

allocations, data transfers, kernel executions, and profiling. Commands are queued in the order

that they are coded in the program but can be executed out-of-order by flagging them for

asynchronous execution.

Investigation of Heterogeneous Computing 35

35

• Create memory objects;

Memory objects are blocks of OpenCL data that can be transferred between host and

device. A kernel executing on a device is only able to access data stored within the memory of

said device, for this reason the device needs to allocate memory to an object where this data can

be stored. Memory allocations can only be created and managed by the host. A memory object,

thus, allows the host to access a chuck of memory on the device.

3.1.3 Kernel Setup

• Read kernel file;

The code executed on the computational device is contained as a separate entity, written

in a manner that exploits parallelism, using OpenCL specific functions. The host executes this

kernel and as such must first read it into memory, and where needed, compile the kernel for

device execution. There are multiple ways to pass a kernel file to the host, such as reading it in

from an external file or reading in a precompiled binary.

• Create program object;

The program object contains the source or binary for the kernels, a built executable, along

with the information required to compile the executable at run time, and the list of devices

compatible with the program. Program objects may be created with precompiled kernel binaries

or with source codes. Precompiled kernels allow for much faster runtime setup however it limits

cross-device compatibility.

Investigation of Heterogeneous Computing 36

36

• Compile kernel;

This optional step creates a binary file for the program object from the source code at

runtime, where the precompiled binaries have not been provided within the application, while

reducing setup time for execution, this allows an application to target multiple devices without

impacting program size or development time.

• Create kernel object;

Based on the program object, a kernel object is instantiated, each containing a kernel

function and the argument values used in said function.

3.1.4 Execution

• Set kernel arguments;

As the name suggests, this step handles the arguments passed to the kernels, for examples

this could be memory size limits, and pointers to the values used in the function. This is done

since the host must handle all calls, queues, and executions.

• Execute kernel (Enqueue task);

In order to execute a kernel on the compute device, it needs to be queued in the command

queue, and as mentioned before, this can be done either synchronously, in which case commands

are executed in order or asynchronously, where commands are executed independently of one-

another.

Investigation of Heterogeneous Computing 37

37

• Read memory object;

After execution, data from the device memory object must be read back into the host.

This can be synchronous (kernel execution is stopped during data transfer) or asynchronous

(device keeps computing while data is being transferred).

3.1.5 Clean-up

• Free objects;

After all kernels are executed, the host must free the memory objects it has created, or

risk crashing the application once device memory has been filled.

3.2 On-going Improvements

OpenCL 2.0 has recently introduced major improvements to the standard. As the

environment matures, more and more features are added to the APIs. In newer releases of the

OpenCL standard, a couple of features stand out due to the improvements they bring to not only

the capabilities of the application, but also the reduction of design complexity.

3.2.1 Shared Virtual Memory

The first of two major improvements brought forth in OpenCL 2.0 is the addition of

shared virtual memory. Before its existence, the user had to manage host memory, device

memory and communication between the two; this took up a lot of time in design and space in

programming. (AMD, 2014)

Investigation of Heterogeneous Computing 38

38

With the introduction of shared virtual memory, this management is no longer required,

there is no need to track buffers and copy information from one point to the other. Shared

pointers have been introduced to fix this exact issue.

OpenCL 2.0 introduces two different types of shared memory: Coarse-grain SVM and Fine-grain

SVM.

These two types are differentiated by the synchronization points used in updating the

buffers, with coarse-grain being updated when the buffers are called, when the kernel is

launched, and when it finishes its operation, and fine-grain including the same synchronization

points but also at atomic operations. Atomic operations are those operations that are completed

in a single time step, relative to other operations, meaning that no other thread can observe an

atomic operations execution. The operation is thus indivisible and irreducible, so it can appear to

the system as if happening instantaneously.

Coarse-grain only offers a small benefit to programming as it removes the need for

individual calls to buffers, but the real improvement can be seen in the (not yet hardware

supported) fine-grain SVM, because using this system, buffer mapping/unmapping is no longer

required and since buffers update more often, the system can be altered to use data prior to a

kernel finishing its main operation.

3.2.2 Device Kernel Enqueue

With OpenCL 2.0 the device is now able to enqueue kernels, without having to

communicate with the host programme. Together with the pipe system, which allows for kernels

to exchange data between them, the system will be able to run at much faster speeds, effectively

Investigation of Heterogeneous Computing 39

39

removing the current bottlenecks constituted by device-host communication speeds. (AMD,

2014)

With kernels given to ability to create new kernels without the use of the host

programme, new possibilities arise, where an algorithm can adapt itself without having to

transfer data back and forth with the host, limiting device to host communication, one of the

main bottlenecks in such a system, to a minimum. One such example is found in networking,

where GPUs and FPGAs can be used for much faster network encryption/decryption. The

accelerator is able to manage data inputs and outputs, without relying on the host CPU.

3.2.3 Standard Portable Intermediate Representation (SPIR-V)

 SPIR-V is a standard developed by Khronos, the developers of OpenCL, to facilitate

application portability and performance. It is a programming language environment, situated

between high-level and low-level languages, which allows for the development of standardized

applications for OpenCL drivers. This removes the need to integrate high-level language

compilers into device drivers, reducing driver complexity, and improves portability across

multiple hardware implementations. (Khronos Group, 2016)

 SPIR-V is an attempt to remove the need to precompile binaries for each individual

hardware device, leading to a much faster runtime compilation and a smaller development effort.

Investigation of Heterogeneous Computing 40

40

3.3 Conclusion

 The use of familiar programming languages and the massive amount of targeted

platforms of the OpenCL framework make it a promising solution for developing heterogeneous

applications, with a much shorted development cycle and an increased resilience to aging. The

ability to easily alter an application so that it targets a different architecture, the ability to

increase performance “under-the-hood” via vendor specific optimizations, and the ability to

expose features unique to individual devices offer any application developed with the OpenCL

framework a much longer lifespan. This also allows for a much faster adoption of newer

hardware architectures, without the need to shift to a different development framework, learn a

new programming language, and redevelop the application.

Investigation of Heterogeneous Computing 41

41

Chapter 4: OpenCL Multi-Architecture Application Development

 This chapter introduces the utilized test-bench applications developed for testing the

efficiency of the OpenCL platform on various workstations containing CPUs and GPUs. The

goal was to utilize applications which could operate on different device platforms with minimal

changes, and without device specific optimizations, in order to reveal baseline performance, or

rather, the worst expected performance of the given systems.

 These applications were developed on a Windows based machine using Visual Studio

2013 and the AMD APP SDK version 2.9, chosen based on the specifications of the

development machine, although, the choice of development environment did not affect the

design of the applications since no device specific optimizations were desired. Applications

targeted both the CPU and GPU architecture either in the same package or as separate

instantiations of the same application.

 In order to test the usability, efficiency and heterogeneity of the OpenCL framework, a

benchmarking system was designed based on applications that could exploit the use of massively

parallel hardware architectures offered by specialized architectures.

 CPU execution was aimed at providing a comparison baseline for all further testing. GPU

execution, aimed at both AMD and NVIDIA devices was chosen because the GPU is the most

widely available accelerator available. The FPGA was chosen as the second targeted accelerator

architecture for OpenCL execution in order to assess both the effectiveness of FPGA based

computing for engineering applications and the duration and complexity of OpenCL based

designs targeting the FPGA architecture; however this is covered in a separate chapter.

Investigation of Heterogeneous Computing 42

42

4.1 OpenCL System Detection

 An application was designed to poll the system for compliant OpenCL devices and list

their respective features, including core count, clock speed, and maximum memory allocation

size. This application lacks OpenCL device specific functionality and thus can report if a system

has OpenCL drivers installed or nor and following that what OpenCL devices are identified.

 By using this setup it can easily be determined if a system is able to run OpenCL

applications or not, and if not, whether the issue is related to available hardware or missing

software drivers.

Figure 9: Excerpt of Device Detection Application

 As see in Figure 9 the application reads all OpenCL platforms, and for each, queries

every available device for information. Memory sizes for buffers holding output data are

calculated right before data acquisition. This is because the number of platforms and devices is

unknown at the design stage and as such pre-allocating memory becomes difficult. The

CL_DEVICE_TYPE_ALL parameter ensures that all OpenCL compliant devices are called, and

can be altered so that the application only reports CPU, or GPU, or accelerator devices.

Investigation of Heterogeneous Computing 43

43

Figure 10: Device Report for Development PC

 The application was designed in two variations, regular and basic output. The regular

output reported the most important features of the scanned devices, information that is helpful in

determining the performance of the device and certain design parameters, such as maximum

workgroup size or memory allocations.

 The basic output variation of the application simply returns the device name and compiler

version, and is designed to be executed in conjunction with the other applications, to identify the

targeted device.

4.2 Application Design

This application used a basic, non-optimized matrix multiplication operation using two

same-sized matrixes populated with random data at runtime, and reported execution time using

OpenCL profiling tools by measuring duration between start of computation until end of data

transfer from compute device to host. This is done to account for the communication overhead

Investigation of Heterogeneous Computing 44

44

generated by different workgroup sizes, and delays in transfer caused by slower bus speeds for

GPU to CPU communication.

Multiple matrix sizes were employed, ranging from 2^8 up to 2^12, on multiple

workgroup sizes, namely 64, 256, and, where available 1024. The automated allocation of a

workgroup size at runtime by the compiler was also utilized, by passing the argument 0 to the

workgroup size, allowing the application to determine the best size allocation.

4.2.1 Host Code

The development process began with allocating the memory buffers that will hold the

compute elements and resulting data. This is done by determining the size of the matrixes based

on the number of elements, as seen in Figure 11. Because the application is designed with square

matrixes in mind, number of elements is determined by squaring the number of rows/columns.

With the matrix elements being of type float, the necessary memory can easily be determined

using the “sizeof” function.

Figure 11: Memory Buffer Allocation

 The memory buffers are filled with randomly generated numbers based on a predefined

seed making use of C’s rand function. Figure 12 illustrates the basic function employed in

element allocation.

Investigation of Heterogeneous Computing 45

45

Figure 12: Function for Matrix Element Allocation

 The first step in the aforementioned OpenCL flow is the allocation of a compute

platform. In this case, the application allows the user to determine which platform to use for the

computation; this is done as a target system may have multiple OpenCL implementations or

different compute devices.

Figure 13: Identifying Available Platforms.

As such, the application must first determine how many platforms are available, allocate

memory for them, and finally store platform information in memory, as seen in Figure 13. A

while loop is created past this that enables a user to pick a targeted platform based on the

compute devices existing within the platform, Figure 14. The user is then asked to pick between

targeting a CPU device on the platform or a GPU device, Figure 15.

Note: The application is not optimized to work with platforms that contain multiple devices of

the same type and will always pick the first one detected.

Investigation of Heterogeneous Computing 46

46

Figure 14: Device Cycle Loop

Figure 15: CPU/GPU Decision Point

Once user input has been finished the application creates the OpenCL context based on

the chosen device’s ID. It can be noted in Figure 15 that each is called with error checking in

place.

Investigation of Heterogeneous Computing 47

47

The command queue is initiated, with OpenCL profiling enabled, in order to determine

total execution time of kernels, Figure 16.

Figure 16: Command Queue Initialization

The OpenCL kernel is loaded from a separate file that is read into memory during

runtime and then compiled into an executable based on the chosen architecture. This allows for

device portability however it does not affect profiling times, Figure 17.

Figure 17: Building Program Executable

Once the compute kernel is creates, memory must be allocated on the device to contain

all three matrixes, the first two are copied from the host, and the first is merely instantiated, as it

will contain the result of the matrix multiplication, Figure 18.

Figure 18: Allocating Device Memory

Investigation of Heterogeneous Computing 48

48

The kernel arguments are then passed; they contain the memory buffers and matrix sizes,

Figure 19

Figure 19: Kernel Argument Passing

At this stage, Work-group and Work-item sizes are set and the kernel is queued in the

command queue for execution, and the application waits for the kernel cu finish, Figure 20.

Figure 20: Command Enqueue

Finally, the contents of the calculated matrix memory buffer are read back into the host

and profiling data is called in order to determine execution duration. This duration is calculated

using built-in profiling tools offered by the OpenCL framework, and take into account the

duration between the first and last command executed by the kernel on the compute device,

Figure 21.

Investigation of Heterogeneous Computing 49

49

Figure 21: Data Retrieval and Profiling

Last but not least, all memory allocations are cleared and the application terminates,

Figure 22.

Figure 22: Memory Clearing

4.2.2 Kernel Code

The kernel code is fairly straightforward, it takes in the global buffers containing the two

populated matrixes, the buffer containing the output matrix and the number of rows and columns

of the matrixes. It defines the two working dimensions using a work-item ID call,

“get_global_id”, and based on this information calculated the value of each individual element of

the resulting matrix, Figure 23.

Investigation of Heterogeneous Computing 50

50

Figure 23: OpenCL Kernel Code

Later versions of the application used external arguments as opposed to user input in

order to facilitate batch execution. The information passed externally was, platform number,

device type, matrix size and workgroup size, Figure 24.

Investigation of Heterogeneous Computing 51

51

Figure 24: External Argument Code Snippet

4.3 Test Bench Environment

 This section will cover the execution of the developed test-bench applications for

OpenCL on available compute systems in the form of workstations. The main focus is to

determine a performance baseline for execution based on standard CPU execution time and

compare that against a GPU unit.

Investigation of Heterogeneous Computing 52

52

4.3.1 System Specifications

Table 1: System Specifications

Specifications System I System II System III System IV

CPU Intel i5-2320 Intel i5-2310 Intel i5-3470 Intel i7-3770

Frequency 3.00 GHz 2.90 GHz 3.20 GHz 3.40 GHz

Compute Units 4 threads 4 threads 4 threads 8 threads

Workgroup Size 1024 1024 1024 1024

GPU AMD HD 6570 AMD HD 6570 NVIDIA 750 TI AMD HD 6450

Frequency 650 MHz 650 MHz 1.02 GHz 625 MHz

Compute Units 6 SM 6 SM 5 SM 2 SM

Workgroup Size 256 256 1024 256

The number of compute units refers to the amount of processors available to any device,

in CPUs this is equal to the number of threads however in GPUs it refers to the Stream

Multiprocessors. Stream Multiprocessors consist of multiple stream processors, the specialized

processing computational resources used in graphical processing. In the case of AMD GPUs

each SM accesses 80 processing elements, while for the NVIDIA each SM contains 128

processing elements. (Asano, Maruyama, & Yamaguchi, 2009)

A workgroup is a collection of computations all executed on a single compute unit. Since each

computation unit hands a work-group, increasing the size of these work-groups allows for the

exploitation of inherent parallelism at device level and reduces communication overhead at the

expense of device memory.

Investigation of Heterogeneous Computing 53

53

 System I was the development computer and had the development kit installed.

 System II was chosen as an almost identical system to the 1
st
 however without any

specific software installed, to determine if efficiency can be affected by the presence or lack of

OpenCL development software.

 System III was chosen in order to test functionality over a different GPU hardware

provider in the form of an NVIDIA GPU.

 Systems IV was chosen in order to determine the CPU performance increase for a CPU

with twice as many cores as System I which was considered the baseline.

4.4 Application Execution

 The first tests using OpenCL applications were based on the Matrix Multiplication

application described in the previous section. The used application was not optimized for any

architecture and featured OpenCL profiling for kernel execution duration reporting. The

application was compiled on a Windows machine using Visual Studio 2013 and the AMD APP

SDK.

 Execution was done using the windows command line interface and later on batch scripts

which queued all executions and logged results to a file. This minimized any effect user

interaction might have on overall execution time.

Figure 25: CPU Matrix Multiplication

Investigation of Heterogeneous Computing 54

54

Figure 26: GPU Matrix Multiplication

 Each matrix size/workgroup combination was iterated 5 times, the results logged and

averaged below in Table 2, the best performing workgroup size was highlighted in green. The

duration was reported in milliseconds, however, due to the large execution times, Table 2 also

shows the duration in minutes for the larger sized matrixes.

4.4.1 System I

 System I represents the development machine, on which all applications were designed or

modified, it includes a suite of development software kits that allow for debugging and

monitoring of applications and as such contains 4 different OpenCL platform environments.

Table 2: CPU Execution System I

Execution Time ms Workgroup

Matrix Size 0 64 256 1024

512 72.45 62.78 61.75 63.54

1024 2,320.77 2,204.63 2,183.47 2,218.83

2048 33,519.61 28,889.39 28,484.52 35,120.07

4096 (5 m)347,118.99 (4 m)277,252.29 (4 m)263,592.12 (5 m)328,294.72

8192 (47 m)2,766,358.04 (38 m)2,336,417.39 (38 m)2,333,558.53 (45 m)2,729,901.38

Investigation of Heterogeneous Computing 55

55

 Although the GPU in System I operates at a much lower frequency than the CPU, its

compute units have access to 80 Stream Processing Units each, for a total of 480 SPUs to be

used in algorithmic acceleration. It is worth mentioning that porting this application from CPU to

GPU involved the alteration of one argument in the host code. Also, for the GPU

implementation, a workgroup size of 1024 could not be allocated as the maximum permitted by

local memory is 256.

Table 3: GPU Execution System I

Execution Time ms Workgroup

Matrix Size 0 64 256

512 23.67 42.01 25.35

1024 212.89 278.06 141.13

2048 1,711.68 2,209.27 1,110.44

4096 13,732.36 17,709.84 8,917.50

8192 (1.5 m) 106,116.71 (2 m) 142,785.23 (1 m) 71,308.35

 It can be easily noted in Table 3 that the GPU outperforms the CPU even at the smallest

execution sizes used; however, the speed-up becomes more apparent as it goes from x2 to x32

depending on the number of computed elements. This is both because of the increased number of

parallel executions and the reduced impact of data transfers.

 This data shows that an entry-level GPU is able to achieve a speed-up of up to 30 times

that of its CPU counterpart, where speed-up is proportional to the size of the calculated matrix.

Development effort for application porting and performance increase is minimal, however with

Investigation of Heterogeneous Computing 56

56

GPU specific optimizations for memory usage and transfers higher speed-up values could be

obtained.

 Automatic workgroup allocation at runtime by the OpenCL compiler leads to the slowest

execution on CPU; however this is not the case for GPU implementations. This leads to the

conclusion that while automatic allocations is not a good design practice for applications, it can

be used in highly heterogeneous systems where applications would otherwise have to be

designed with the specifications of the weakest system in mind.

 Full CPU benchmarking, with 5 iterations, resulted in around 16 hours of compute time,

for the GPU execution using the same parameters the compute time was reduced to around 30

minutes. However, for a more fair comparison, the 1024 workgroup execution would need to be

excluded from compute time, leading thus to a duration of approximately 12 hours.

4.4.2 System II

 This computer system is one of the workstations available in the University of

Huddersfield computer labs. Specification wise it is almost identical to the development unit,

however it lacks any form of development kit for OpenCL or similar drivers. However, OpenCL

drivers required for execution are available within the basic Intel CPU drivers, and as such

benchmarking should not be affected. Also, it is expected that GPU execution will also be

guaranteed by Intel drivers.

 CPU execution results remained mostly consistent to those from the previous system,

with performance being at most 10% slower on System II compared to System I.

Investigation of Heterogeneous Computing 57

57

 GPU execution however failed passed matrix sizes of 1024, leading to the inability of

running the full benchmark. When executing the application with any matrix size over 1024, the

GPU driver crashed and was restarted by Windows. This reset the GPU while the kernel was still

execution, leading to a seemingly unending execution time, Table 4.

 This issue was traced to the timer watchdog within Windows, its purpose is to monitor

GPU execution and stop any application that appears to be stuck. This is done to ensure that the

user does not lose access to the computer if an application gets stuck in an endless loop. Since

OpenCL uses the entire GPU during execution, when the GPU used also drives the display, the

latter freezes, preventing the user from issuing further commands until the program finishes.

According to Microsoft specifications, the default wait time for this watchdog is 2 seconds;

however this was not the case for the development machine since it had no issues completing the

execution. (Microsoft)

Table 4: GPU Execution System II

Execution Time ms Workgroup

Matrix Size 0 64 256

512 19.22 36.61 17.60

1024 175.25 271.39 138.63

2048 1,454.87 2,153.37 1,086.38

4096 13,457.71 17,444.19 8,712.4

8192 103,994.37 141,357.37 70,773.537

Investigation of Heterogeneous Computing 58

58

 Further investigation revealed that System I had a timeout of 180 seconds, while System

II did not have a defined register key for the timeout function, thus reverting to the default 2

second value. It is assumed that this registry is created and managed by the GPU drivers on the

system, based on specifications offered by the GPU vendor. Since System II did not have any

proprietary drivers installed and was running off of the base windows drivers, the register entry

increasing the GPU timeout did not exist.

 Based on this evidence it becomes obvious that certain alterations are needed in the

application design that would ensure host-device communication within the allocated timeout

period, as to avoid triggering the timer watchdog.

4.4.3 System III

 Following unsuccessful execution on a driverless system, and in order to investigate

performance on a different GPU architecture, a NVIDIA based system was chosen as a third

target. On this machine, OpenCL fails to identify the GPU device as part of the base platform

since NVIDIA does not share compilers with other manufactures, as such, in order to execute

OpenCL applications that target NVIDIA GPUs the proprietary GPU drivers need to be installed.

Since previous work has shown lack of proprietary drivers prevents complete benchmark

execution, they were installed on this system prior to benchmark execution.

Investigation of Heterogeneous Computing 59

59

Table 5: CPU Execution System III

Execution Time ms Workgroup

Matrix Size 0 64 256 1024

512 72.04 74.40 78.35 72.63

1024 2,486.66 2,964.48 2,547.38 2,403.90

2048 26,245.34 27,082.33 25,748.42 24,648.62

4096 253,705.94 247,687.54 244,500.25 241,906.53

8192 2,021,904.59 2,087,273.88 2,164,539.81 2,011,549.21

 For the CPU implementation, speed-up compared to the initial test system is once again

unnoticeable for all except the highest matrix values. At matrix values of 4096 and 8192 the

CPU in System III, which is one generation newer than the previous ones displays a performance

increase of up to 20%. This increase is likely due to improvements in data transfer protocols and

bus speeds becoming relevant only at large data sizes.

Table 6: GPU Execution System III

Execution Time ms Workgroup

Matrix Size 0 64 256 1024

512 3.15 5.39 3.68 3.13

1024 27.41 44.75 30.20 30.20

2048 331.65 349.38 254.96 203.05

4096 3,072.67 2,836.21 2,195.49 1,630.01

Investigation of Heterogeneous Computing 60

60

8192 25,304.24 23,421.24 17,857.63 13,260.44

 The GPU benchmark on System III displayed a performance increase over the GPUs in

the previous systems; this performance increase is attributed to the much newer architecture

inside the NVIDIA GPU, increased frequency and number of processing units.

 The GPU timeout error identified earlier was still present initially on the system, however

it could be easily altered within the NVIDIA Nsight control panel, ultimately this issue would be

resolved at software level instead of relying on workarounds.

Table 7: GPU Speed-up Against Baseline

GPU speed-up GPU

Matrix Size System I System II System III

512 2.4 3.5 19.7

1024 15.5 15.8 72.3

2048 25.7 26.2 140.3

4096 29.6 30.3 161.7

8192 32.7 33 176

Table 7 shows the speed-up obtained by targeting GPU devices instead of CPUs,

compared to the CPU baseline on System I, and displays an increase of up to 30 times on a GPU

architecture that is part of the same generation as the CPU and upwards of 170 times for a much

newer and faster GPU architecture.

Investigation of Heterogeneous Computing 61

61

4.4.4 System IV

 CPU execution on System IV was aimed at determining the performance increase on the

CPU when the number of available compute units was doubled; GPU execution was excluded

since the device was found to be out-dated.

Table 8: CPU Execution System IV

Execution Time ms Workgroup

Matrix Size 0 64 256 1024

512 59.45 62.76 58.22 57.58

1024 1,779.39 1,853.35 1,794.15 1,778.48

2048 16,716.48 17,343.45 16,108.97 16,090.35

4096 193,401.82 194,583.96 187,702.54 187,492.11

8192 (20 m)1,192,011.20 (24 m)1,467,616.96 (25 m)1,490,003.31 (19 m)1,165,134.26

Table 8 shows a number of differences compared to Table 2, a direct comparison shows a

performance increase between 20% and 120%, however running a comparison based on the best

performing workgroup size of each CPU shows that performance actually varies between 15%

on lower matrix sizes, and 80% at higher matrix sizes.

4.5 Conclusions

 CPU performance in parallel heavy applications is influenced more heavily by number of

available threads than it is by the speed of individual units. GPU performance was shown to

Investigation of Heterogeneous Computing 62

62

increase with computational size due to the decreased impact of overhead in data

communication, and the ability to better parallelize execution across more elements.

 The OpenCL environment is fragmented, with device vendors implementing platforms

that only function on a certain devices and that are based on various versions of OpenCL. This

hinders the development of fully heterogeneous systems and suggests that the system is not yet

fully mature.

 Development effort for architecture porting is minimal for the CPU and GPU architecture

for applications that do not feature device specific optimizations. Automated workgroup

allocations at runtime are not viable unless the targeting multiple types of device simultaneously.

 In order to ensure kernel execution without the interference of the GPU watchdog timer

on Windows machines certain modifications must be made within the application to ensure that

host-device communication takes place at regular intervals regardless of kernel execution

duration. On slower systems, where the kernel execution might take over two seconds, the lack

of such a system leads to kernel failure and prevents execution. While this could also be solved

by decreasing the complexity of kernels and increasing their numbers, it would also affect the

performance on faster systems.

 Drawing from the findings of the above work a much larger test-bench was envisioned.

One that would span hundreds of systems simultaneously, and if successfully implemented,

would also expand the computational capabilities of the University of Huddersfield. A different

application was desired for this test-bench, one that featured better optimizations for GPU

computing, and could tackle the watchdog issues described above. This new test-bench, and the

application selected for it, is described in the following chapter.

Investigation of Heterogeneous Computing 63

63

Chapter 5: OpenCL framework implementation over HTCondor

 Based on promising results from initial testing, together with the existence of unused

GPU resources within the compute infrastructure of the University, a project was proposed to

exploit idle general purpose GPU resources for compute applications. A prime candidate for this

was identified in the field of High-Throughput Computing.

 In High Throughput Computing emphasis shifts from job execution rate to discrete job

parallelism, meaning that the speed of individual compute resources is not as relevant as their

number, availability and overall throughput. Prioritising throughput over frequency allows HTC

to exploit opportunistic environments, where the number of available resources is constantly

changing. One such environment is a University campus, where workstations can be used for

computational purposes when otherwise idle, a process referred to as cycle-stealing. (Livny,

Basney, Raman, & Tannenbaum, 1997)

 A tool created specifically for this purpose is HTCondor, a workload management system

for heterogeneous, opportunistic environments. In HTCondor tasks are distributed among

available resources; where the term resources refers to workstation PC’s that have been idle for a

set period of time. The system incorporates job execution queues, scheduling, prioritization,

resource discovery, and of course, resource management. Another important feature, and one

closely tied to the cycle-stealing mechanism, is a checkpoint system that prevents total work loss

in the event of a workstation being removed from the resource pool, be it due to hardware

failures or idle state being broken by used activity. For example, if a user returns to his

Investigation of Heterogeneous Computing 64

64

workstation during job execution, the job is then migrated to a different workstation. With

applications that support check-pointing, the data loss can be kept at a minimum.

 Submitted jobs are matched to resources by using the ClassAd mechanism, a framework

that allows both jobs and machines to specify requirements and or preferences in regards to

resource allocation. The system actively scans for resource changes, and removes workstations

that have been taken offline, or have not been available for long periods of time.

 The University of Huddersfield implements an HTCondor pool, with an approximate

2300 workstations on campus, the resource pool totals at around 7000 CPU cores. However, due

to the opportunistic nature of this system, peak availability is never achieved, with daily reports

averaging between 700 and 3000 available nodes at any given time. The system is part of the

Queens Gate Grid, the supercomputing resource created to support the research community at the

University of Huddersfield. (Gubb, 2013)

Investigation of Heterogeneous Computing 65

65

Figure 27: Condensed Path of HTCondor Access

 The goal of this research was the integration of the existing GPU resources within the

HTCondor pool, supplementing the existing CPU based implementation without introducing any

changes that would affect existing end-users. The resulting GPU resources would be used to

supplement the dedicated GPU cluster. Another goal of this was a case-study of the

effectiveness, flexibility and ease-of-use of the OpenCL framework across a highly

heterogeneous resource pool. The chosen benchmarking application was based on Fast-Fourier

Transforms.

While a significant number of Universities across the UK deploy HTCondor pools within

their campuses, there is limited research output indicating GPU compute integration within these

pools. (Gubb, 2013)

Investigation of Heterogeneous Computing 66

66

 GPU detection within an HTCondor system is facilitated by two built-in detection

software applications. These are:

1. CUDA based detection;

- Software detects CUDA compliant GPUs, returns device name, memory limits and

core count;

2. OpenCL based detection;

- Software detects OpenCL compliant GPUs, returns device family and memory.

 Relying on a CUDA based approach limits the use-case to only NVIDIA GPUs, and the

built-in OpenCL algorithm does no return enough relevant information about the existing

resources. For this reason, a different OpenCL program was designed, to poll a target computer

for all available OpenCL devices (be it CPU or GPU) and record information. As OpenCL is

compatible with CUDA devices, there is fragmentation when using it, thus trading platform

specific optimizations for increased flexibility.

 Device detection was executed over the live environment, where normally, the

opportunistic environment works against benchmarking or individual node execution. This was

overcome via the use of script based generation for ClassAds, targeting individual machines.

1000 units were randomly selected from the pool to partake in the benchmarking. GPU

discovery is evidenced in Table 9.

Investigation of Heterogeneous Computing 67

67

Table 9: GPU Landscape

As can be seen, although the system is very diverse, around 30% of polled machines

failed to execute the GPU detection software. Following a brief investigation it was determined

that a number of machines did not have video drivers installed for the dedicated GPU cards, thus

preventing OpenCL execution. Vendor distribution is even, at around 50% each, not accounting

the failed reads. Age-wise, the devices are fairly old in terms of GPU architectures, being

released 2-3 generations ago. The performance gap between GPU generations is made evident by

the performance graphs showing in this work.

5.1 Fast Fourier Transforms

 It was decided that the previously designed application, for matrix multiplication, was not

optimal for this new test-case, and a real world engineering application was needed to more

accurately portrait the performance to be expected within such a system.

 One such application, presented in investigated literature as frequently used in digital

signal processing is the Fast-Fourier Transform, an algorithm for converting signals for

Investigation of Heterogeneous Computing 68

68

representing time-domain signals in frequency domain. The FFT operation can be broken down

into three major steps. (Brigham, 1974)

 First, a multi-point time-domain signal is decomposed into multiple time-domains signals

containing a single point. For example a 16 point signal is decomposed into 16 signals with one

point each. The decomposition process, in this case, takes 4 stages to complete, each stage

doubling the number of signals while halving the number of points per signal, thus resulting in 2,

then 4, then 8 and finally 16 signals. Also, the decomposition process is interlaced, meaning that

the signal is split into odd and even numbered samples, as observed in Figure 28. Note; this is

generally done via bit reversal sorting, by flipping the binary value of the signal number. The

number of stages needed to complete the operation is equal to the

Figure 28: FFT Interlaced Decomposition

Investigation of Heterogeneous Computing 69

69

 The second step lies in calculating the frequency spectrum for each resulting time-domain

signal. This is the easiest task, as the frequency spectrum of a 1 point signal is equal to itself.

 The final, and most complex step, involved combining the frequency spectra generated

into a single spectrum. This is done in the reverse order of the original decomposition, which in

the example case would be again 4 stages, yielding a 16 point frequency spectrum. The

computational elements required to create these spectra are known as butterfly calculations.

Figure 29: FFT Butterfly Calculation

 An application for OpenCL based FFT computation optimized for GPU execution,

primarily on the AMD architecture, that also support CPU execution for heterogeneous

computing was discovered in the form of the clFFT library. This library offers a set of functions

that can be used to create applications aimed at FFT execution on GPU devices. (AMD, 2016)

 The clFFT library also offers a benchmark application, called clFFT client, which allows

for the rapid assessment of device performance across multiple environments. It is a thoroughly

designed application that includes device specific optimizations for both CPU and GPU

architectures. As such it was chosen as the benchmark application, as opposed to designing a

similar application that would serve the same purpose.

Investigation of Heterogeneous Computing 70

70

 The application was compiled from source to both allow for the understanding of the

library functionality and to allow further development of FFT applications based on the clFFT

library.

5.2 Benchmark Execution

 GPU benchmarking was accomplished over the same live environment as the previous

set, namely over the 700 machines detected as having GPU components during. The chosen

application for GPU benchmarking was Fast-Fourier Transform, a computation that is both

widely used in the field of engineering and makes use of the massively parallel GPU

architecture. Each of the 700 units executed single-dimensional FFTs over 17 sizes, with 1000

iterations per size, to ensure benchmark precision. This resulted in approximately 12 million

FFTs, and roughly 28,000 CPU hours. It would take a single computer, fitted with a regular 4

core CPU, more than 3 years of constant work to accomplish this task. (Dafinoiu, Higgins, &

Holmes, Accelerating High-Throughput Computing through OpenCL, 2016)

 When operating in a heterogeneous environment as HTCondor, knowing what devices

are available prior to execution is challenging, thus an application aimed at such a system should

incorporate means of dynamically optimizing resource allocation during run-time. This however

is being the scope of this work, and as such, the lowest common denominator was used when

optimizing the application performance.

 CPU performance was established for comparison purposes, on a standard Intel i5 CPU,

as seen in Figure 30. The metric used to measure the performance of the system was the Giga

Investigation of Heterogeneous Computing 71

71

FLOP. The formula used to derive the GFLOPs is shown in the HTCondor Related Scripts

section.

Figure 30: CPU Benchmark

 Executed in a controlled environment, the benchmark takes between 60 and 75 minutes

on an average system to complete. On the live environment however, execution duration was

greatly affected by resource usage during the day. This resulted in full benchmarking taking

around 48 hours, with most of the systems being able to complete their work at night. This is due

to having fixed allocations for targeted computers, which is only the case during benchmarking.

Investigation of Heterogeneous Computing 72

72

Figure 31: GPU FFT Performance

 Detailed performance is showcased in the above chart, with a more detailed breakdown

given below.

 The chart shows extremely varied performance across the system, with results ranging

between 7 and 180 GFPLOPS of performance. One can observe that with each generation of

GPUs, as evidenced by the release year referenced in Figure 31, performance is increased by a

significant amount. This becomes more evident as one inspects the clock-speeds and compute

units available in each GPU generation, factors which influence the overall performance of

parallel based computations.

 Performance-wise, the newest GPU card, the NVIDIA GTX 970, is the best performing

GPU, while also being the 3
rd

 most used GPU in the pool. Due to university policies, computer

systems are upgraded every few years, leading to a reduction in underperforming GPUs within

Investigation of Heterogeneous Computing 73

73

the HTCondor pool. For example, the worst performing GPU in the system, the AMD 5600, is

on average 15 times slower than the maximum, but it also only exists in 8 of the 700 computers,

as it is slowly replaced by newer hardware.

 However, the University employs a dedicated GPU cluster for massively parallel

applications like the FFT, and as such, any new contender needs to be compared against it, in

order to determine its effectiveness. This cluster is comprised of two NVIDIA C2050 computing

processors, these GPUs are purpose-built with parallel computation in mind, incorporating error

correction codes, high memory, and asynchronous, high-speed, memory transfer. Released in

2010, these GPUs advertise 448 cores operating at 1.15 GHz. In perspective, the GTX 970 cards

advertise 1664 cores operating at 1.05 GHz. (Dafinoiu, Higgins, & Holmes, Accelerating High-

Throughput Computing through OpenCL, 2016)

Figure 32: GPU Cluster Comparison

Investigation of Heterogeneous Computing 74

74

 As can be seen in Figure 32, HTCondor average performance closely matches that of a

single dedicated GPU card. This however is on a per-node basis, meaning that there are hundreds

of more nodes available on HTCondor that on the dedicated cluster, capable of handling GPU

computation.

 It can also be noticed that the average performance of NVIDIA GPUs, or better said,

cards newer than 2010, greatly outperforms the C2050. A noteworthy mention is that the GTX

970 has twice the compute units of the C2050 while also operating at almost twice the clock

speed.

 This benchmark revealed an untapped resource of approximately 30 Teraflops

computational power on just the 700 nodes, extrapolating the results to the 2200+ nodes on

campus, the peak performance of the HTCondor system reaches 90 Teraflops.

 OpenCL integration within the HTCondor resource pool has revealed a number of GPU

resources that can be exploited in order to increase system performance for parallelizable

applications. OpenCL has proven to be a highly versatile framework easily adaptable to a highly

heterogeneous environment.

 This work has shown that newer generation general purpose GPUs are able to match the

performance of older dedicated GPU resources, offering a much better price/performance ratio.

However, maximizing performance over a heterogeneous system, such as HTCondor is

extremely difficult, and requires changes to both the application and the system itself. The

OpenCL framework, through its flexibility and ease-of-use, is a valid candidate for developing

heterogeneous applications over such systems. A conference paper based on this work was

published with the Emerging Technologies Conference in June 2016, where it received positive

Investigation of Heterogeneous Computing 75

75

feedback from reviewers and peers. (Dafinoiu, Higgins, & Holmes, Accelerating High-

Throughput Computing through OpenCL, 2016)

5.3 HTCondor Related Scripts

 The HTCondor heterogeneous resource pool was not designed to allow for benchmarking

of individual units inside the pool. As such, picking a set number of units and executing a given

application over each individual unit is not supported by the system, and accomplishing this task

required the use of automation scripts. Also, the computation of 17 FFT executions over 700

computers results in a large amount of generated files that need interpreting. The 1000 iterations

are managed inside the application, and as such do not count towards the number of generated

files.

 Also, the formula used to derive the GLFOP performance of each individual system, used

by the clFFT client is:

 Where 5 is a constant for real FFTs calculations, and walltime is the duration of the

execution. (AMD, 2016)

5.3.1 Condor Individual Unit Execution

 In order to ensure that applications execute on each of the 700 targeted units only once,

no matter how many are available or how many times the job is restarted, the only solution

identified was by demanding from HTCondor a specific machine for each job.

Investigation of Heterogeneous Computing 76

76

 As such a script was written, this scripted created a job-file to be submitted to HTCondor

based on each line within a predefined file. This file contained the hostname of each of the 700

computers on a separate line. This script was written for the Linux shell environment used on

HTCondor, Figure 33.

Figure 33: Shell Script for Execution

 The above script contains all the standard job parameters of an HTCondor job (minus

architecture requirements, for simplicity) and as can be seen creates and queues a job iteration

for each machine, asking that the output file resulting from the said job be named after the

executing machine. This generated output file contained the 17 executed FFT outputs.

5.3.2 Individual Machine Benchmarking

 It can be noted in Figure 33 that the executable passed to HTCondor is not the clFFT-

client application, but rather a batch script written for windows. This script executes 17 different

instances of the application each with different parameters. The arguments passed were related to

the size of the computed FFT, the number of iterations run, the chosen device architecture, and

the so-called batch size, which reflected the size of the used arrays, similar to the workgroup size

Investigation of Heterogeneous Computing 77

77

used in the Matrix Multiplication benchmark. It is worth mentioning that maximum batch size

was determined by a mix of used FFT size and device memory, leading in lower batch sizes

being used for larger FFTs. Note; the batch script also executed the application with an argument

that returned the name of the targeted device, in order to determine what type of GPU executed

the application.

Figure 34: Fragment of Windows Batch File

5.3.3 Data sorting and processing

 The resulting data was processed and sorted on the development machine, using a batch

script and a python script. The batch script moved all files relevant to an FFT size into an

intermediate folder, and then executed the python script for that folder, logging the output into a

separate file, and then moving the files from the intermediate folder to a separate location for

storage. This was iterated for each FFT size, and resulted in 17 files containing only the relevant

timing information needed for benchmarking, Figure 35. The remaining files the ones containing

the device name. They were moved to a separate file.

 Performance sorted by GPU device used was retrieved in Linux, using the GPU names to

determine which files to target, then the “grep” command to retrieve the execution duration and

GFLOPS.

Investigation of Heterogeneous Computing 78

78

Figure 35: Python Script for Data Sorting

Investigation of Heterogeneous Computing 79

79

Chapter 6: OpenCL FPGA Acceleration

The FPGA, introduced in a previous chapter, is a type of integrated circuit designed

specifically to be altered after manufacturing. The FPGA is based on configurable logic blocks

connected via programmable interconnects, these features allow for the “field-programmable”

element of the FPGA, altering the design after manufacturing.

 Over the past years FPGAs have found their way into many different markets, from

image processing to networking, from audio applications to aerospace applications, the

versatility of the FPGA and the much lower development costs associated with its usage have

allowed it to flourish.

 FPGAs come in many different shapes and sizes, depending on their intended purpose.

Those relevant to networking industries come in rack-mounted chasings with network

connectivity and increased RAM. Those dedicated to image processing may come in a PCI-E

format, and could lack network connectivity entirely. And while all these FPGAs are different,

in terms of I/O connections, memory, and size, they are all programmed in the same way. This is

because the low-level allocations on the actual chip are handled by the compiler. The user is able

to make low-level allocations to further tune and optimize the device, however it is not

mandatory. From a programming perspective, the FPGA is like a blackboard; the user draws

upon it the schematic of the desired design, making sure not to exceed the size of the board.

Alterations to the design are possible, and as easy as wiping chalk off the board. However, unlike

the blackboard, which can only be used to prototype a design, the FPGA allows for the full

Investigation of Heterogeneous Computing 80

80

implementation of the system, and further functional testing and redesign. (Dafinoiu, FPGA

Based Implementation of Offset PPM, 2015)

 The FPGA takes a parallel approach to instruction execution, limited by the amount of

logic blocks and interconnects available. Whereas a CPU is only able to execute one instruction

at a time, or a small number of them on a multi-core CPU, the FPGA is able to spawn as many

processes as it can fit within its size for the desired task.

 One of the main drawbacks of using FPGAs, especially for computational purposes, has

been the steep learning curve of the HDL environment, as well as the need for a parallel

approach to computing. This is why this chapter aims to investigate the usability of the OpenCL

framework for FPGA design.

6.1 Hardware Description Language

VHSIC HDL, or VHDL for short, is a hardware description language used to describe

digital or mixed-signal systems in electronic design. Unlike more familiar programming

languages which run instructions sequentially, VHDL runs operations in parallel, making it a

dataflow language. Parallel execution is done via the use of processes that are able to run

independently of one-another, being executed when a predefined criteria is met. VHDL allows

for the text description of a logic circuit which is then synthetized, simulated and placed onto a

chip to create a working design. Being an IEEE industry standard for FPGA programming,

VHDL is easily ported between different FPGA devices, given viable hardware configurations.

(Pellerin, 1997)

Investigation of Heterogeneous Computing 81

81

 One of the main disadvantages of using VHDL is the design complexity of projects, since

VHDL is not as high-level a language as C/C++. There are also many different software

development kits offered by FPGA manufactures, each utilizing a completely different set of

tools, and features, that further encumber the design process. Also, because the FPGA targets a

more niche market than conventional programming languages, there is a lack of available

instructions on the use and optimization of FPGA designs, with many designs being offered as

ready to use Intellectual Properties.

6.2 Altera SDK for OpenCL

 Because of the way an FPGA is designed, the approach to using OpenCL to program it is

not as straightforward as the ones for GPU or CPU. This is because prior to being designed with

a task in mind the FPGA is a blank slate, as such unable to be exploited for computational needs.

In order to program, or flash, the FPGA to be used as an OpenCL accelerator, a compiler is

needed to turn OpenCL kernel code into the binary coded used to flash the FPGA. (Altera, 2011)

 Altera, being one of the leading FPGA developers, as well as one of the founding

members of the Khronos group, developing OpenCL, offers a SDK for OpenCL, known as

AOCL, to allow for the creation of FPGA based OpenCL applications. In essence, the SDK is

easy to use; it simply takes an OpenCL kernel code and converts it into a file that can be used to

flash the FPGA so that it can be used as an accelerator.

 The OpenCL SDK uses its own OpenCL calls in the host and kernel code, since the

FPGA operates differently from previously discussed systems. Also, FPGA design greatly

benefits from properly optimized algorithms due to its much higher compute unit count. Altera

Investigation of Heterogeneous Computing 82

82

OpenCL designs are based on the Altera specific ”utils.h” library rather than the “cl.h” library.

The utils library is not a stand-alone implementation of OpenCL, but rather a set of functions

specifically created for FPGA use that sit on top of the OpenCL library. (Altera, 2011)

 The Altera OpenCL SDK, unlike CPU or GPU OpenCL SDKs is not free, following the

trend in FPGA development environments, which are not inherently available to the general

public, making FPGA OpenCL development more of a niche market than the FPGA one. The

SDK is however offered for free as part of the Altera University programme, and was acquired

towards the end of the project. Hence, data gathered for the FPGA development and

benchmarking sections is limited; a more detailed and in-depth research will be conducted as part

of future work.

6.2.1 Altera Offline Compiler

 The AOC is used to compile .cl kernel codes into hardware configuration file, containing

the FPGA image to be used in a binary format. This is used by the host, at runtime, to execute

the kernel applications. The AOC generates the files needed to program the FPGA and execute

the kernel application during runtime, Figure 36. (Altera, 2016)

Investigation of Heterogeneous Computing 83

83

Figure 36: AOC Flowchart

 The AOC employs two types of compilation; a one-step compilation for simple kernels

that feature minimal compiler optimizations. It is a simple procedure involving a single

command that generates an .aoco file containing intermediate information and used in generating

the next file, the .aocx. This second file contains the binary for the hardware configuration of the

FPGA and is used by the host during runtime to create and execute the kernels on the device. A

subfolder is generated along with the two files contains a number of intermediary files used to

create the final hardware binary. A log file is also created containing the estimated resource

usage within the FPGA.

Investigation of Heterogeneous Computing 84

84

 The multi-step compilation is used in more complex kernels, which can greatly benefit

from optimizations. The first step assumes the form of an intermediate compilation, which

checks for syntax errors, then creates the .aoco file without generating the hardware binary for it.

This step also generates the log file showing estimated resource usage.

 Second, the functionality of the OpenCL kernel can be emulated on one or multiple

emulation devices to locate any existing functional errors. Third, the resource usage of the

OpenCL kernel on the FPGA can be reviewed to uncover possible optimizations to hardware

resource usage.

 Profiling, allows the introduction of performance counters into the .aocx file. These

functions measure performance during runtime and can be interpreted using the Altera Profiler to

further optimize the application.

 Once all desired steps are achieved, the final application can be compiled from the .aoco

file to generate the desire .aocx.

6.2.2 Application porting

In order to function with the AOCL, any OpenCL design targeting Altera FPGAs benefits

from using the libraries released by Altera for this purpose reason; which add number of features

to the base OpenCL library.

For example, the opencl.cpp file shipped by Altera together with an OpenCL example

design contains both functions that are relevant to application design, such as error checking,

profiling, or wait-timers, but also a number of Altera specific functions for memory allocations,

.aocx interpretation, and memory clean-up. In Figure 37, memory buffers are created for two

Investigation of Heterogeneous Computing 85

85

input matrixes, these are allocated into the FPGA memory on two separate banks, which

increases memory bandwidth during data transfers.

Figure 37: Custom Memory Region Targeting

These libraries ensure faster development of FPGA based OpenCL applications at the

cost of encumbering cross-platform design. It was shown in a previous chapter that with minimal

changes an OpenCL application could be changed between targeting CPUs and GPUs; however

the FPGA implementation requires a much more complex redesign. Despite this, the FPGA

segment could be implemented alongside the former two, in order to create a unified,

heterogeneous application.

6.3 DE1 System-on-Chip

 The FPGA platform chosen for the development and benchmarking of OpenCL based

applications was a development kit aimed at university use known as the DE1 System-on-Chip.

This small development board features an ARM CPU paired with an ALTERA FPGA designed

for embedded applications. (Terasic, 2016)

Investigation of Heterogeneous Computing 86

86

Figure 38: DE1 SoC Development Board

 The device includes multiple features intended for user input during run-time, embedded

system operation as a standalone computer, and expansion slots, however these features are

beyond the scope of this work and as such are not explored further.

6.3.1 Setup

 Before software development began, the SoC was set-up for OpenCL execution,

connected to a PC for command-passing, and tested for functionality.

 Given that the FPGA is controlled by the embedded ARM CPU, an operating system

must is required to control all actions on the board. Prior to initial start-up of the device, the

FPGA configuration mode must be defined using the on-board via the MSEL pins.

Investigation of Heterogeneous Computing 87

87

 There are three modes in which the FPGA can be configured; first, the FPGA is

programmed using the on-board flash memory. This is used when programming the FPGA from

a host computer using the Altera Programmer. Second, the FPGA is programmed using the built-

in processor, referred to as a Hard Processor System, or HPS running a Linux OS with a

command line interface, Figure 39. The third and final configuration mode is similar to the

second, in the sense that the FPGA is once again programmed via the HPS; however this mode is

set when using much larger Linux OS images that feature desktop environments as opposed to

the CLI. (Terasic, 2016)

Figure 39: MSEL Position for Linux with CLI

 For this experiment, the second configuration mode was chosen, using the DE1-SoC

Linux Console image that was burned onto an external flash memory card.

 Connection to the board was established using a USB port through a serial connection

managed by the PuTTY software, Figure 40. Once powered on, the system boots the Linux OS

and can be controlled via the serial connection.

Investigation of Heterogeneous Computing 88

88

Figure 40: Serial Connection Through PuTTY

 The Linux image of the DE1-SoC comes with two demo applications preinstalled. While

not in any way compute intensive, these two applications serve as a straightforward method to

test the functionality of the OpenCL environment.

 Prior to execution, the user must initiate the OpenCL environment, loading the OpenCL

driver and the environment variables pointing to the OpenCL run-time library on the system.

This is done via a pre-installed script called “init_opencl.sh”, Figure 41.

Figure 41: Contents of init_opencl.sh Script

Investigation of Heterogeneous Computing 89

89

 Before executing the OpenCL application of choice, the FPGA must be programmed with

the binary file generated by the AOC for said application. The AOCL is invoked for this purpose

using the command “aocl program /dev/acl0 application.aocx” where acl0 is the targeted FPGA

and the .aocx file is the used binary. Following this step, the targeted host executable can be run

for OpenCL execution, Figure 42. (Terasic, 2016)

Figure 42: FPGA Programming and Vector Addition Demo

 Having determined that the device functions as expected, the next step is installing the

relevant development hardware on the PC.

 The AOCL is bundled together with the Quartus software, in this case version 14.1,

which is recommended for the DE1-SoC. Installation of the software is straightforward and will

not be detailed in this work. Once the software has been installed, the user has to set the

environmental variables for the AOCL. These variables point to the AOCL installation and the

board support package for the targeted FPGA.

 Applications are designed in the same manner as CPU and GPU ones, using, in this case,

the Visual Studio environment, however compilation of the two required files, host and kernel, is

significantly different.

Investigation of Heterogeneous Computing 90

90

 The AOC is used to turn the kernel code into a hardware configuration file, through the

command-line interface. The practice is straightforward however the compilation process is

resource demanding and time consuming. The compilation process will be detailed in the

following section.

 The host-code needs to be compiled for the ARM processor, as a Linux executable.

Fortunately, the Altera software comes with an embedded Linux environment through which a

Linux executable can be cross-compiled on Windows by using the MAKE software.

6.4 Benchmark Application

 The chosen benchmarking application for the SoC board was once again based on Matrix

Multiplication. However, rather than modifying the existing CPU/GPU application, this

implementation was based on a similar design offered by Altera used in benchmarking much

larger FPGA devices. (Altera, 2015)

Because of this, the design had to be reduced in size and complexity in order to fit onto

the FPGA. This design change was similar to the batch method used in the FFT implementation;

however, since it affects the kernel code as well as the host, it cannot be altered at run-time as it

is used in generating the hardware configuration binary. As such, two variations of the

application were created, one based on block sizes of 16 and 8. The initial version of the

application, with a block size of 64, reported an estimated resource usage that exceeded device

capabilities, seen in Figure 43.

Investigation of Heterogeneous Computing 91

91

Figure 43: Usage Estimation Report for block 64

Figure 44: Usage Estimation Report for block 16

 The application included accuracy testing, where the application was executed on the

CPU after FPGA execution and results were compared, Figure 45. This feature was used in

initial execution of the application, on small matrix numbers however it was removed from the

benchmark version because the embedded CPU was struggling to complete the larger matrix size

executions.

Investigation of Heterogeneous Computing 92

92

Figure 45: Reference Computation Executed on the ARM CPU

 Application complexity was further reduced by removing the built-in options feature and

replacing it with a single external parameter which determined matrix size, in tone with the

previous Matrix Multiplication application.

 The application was initially created to target multiple FPGA devices at the same time,

through the introduction of “for” loops in the host code segment, this functionality was

maintained, to be used in future work.

6.5 Execution

The fully compiled application, composed of two files, the Linux executable and

hardware configuration binary were transferred onto the SoC board via flash storage.

Programming the FPGA with the Matrix Multiplication hardware binary was done first, as it

would remain unchanged until the device was powered down, or a different binary was

programmed in its place. The Linux executable was ran through a script calling it with different

Investigation of Heterogeneous Computing 93

93

external parameters for matrix sizes multiple time, with the resulting output being written to a

separate file for interpreting. Execution results are shown in Table 10.

Table 10: FPGA Execution Time

Execution Time ms Workgroup Partition

Matrix Size
Block Size 16
Workgroup 8

Block Size 8
Workgroup 4

Block Size 8
Workgroup 2

512 32.38 30.73 58.51

1024 265.91 245.671 466.84

2048 2,083.45 3,830.81 4,041.5

4096 16,608.05 57,556.30 45,898.44

5600 41,888.51 49,716.25 76,312.36

It can be observed that overall, higher block sizes lead to increased performance.

However for very small values the much smaller block size proves to be faster due to less

overhead communication. For the above implementations, block size 16 exploited the FPGA

resources to the fullest of their potential. The other two implementations used around 50%, and

30% of available logic. The performance doesn’t however seem tied to the amount of resources

used, leading to the assumption that there is still optimization work to be done to the compiler.

The execution time noted in red appears to represent a bug that only affects the 4096

value on block size 8, workgroup size 4. For unknown reasons, performance on that matrix size

is heavily impacted. The values immediately above and below it (4088/4104) both execute in ½

of the time shown above. Debugging of the implementation in order to determine the actual

cause of the impacted performance was not executed due to time constraints.

Investigation of Heterogeneous Computing 94

94

 Unfortunately there is not enough memory on the FPGA device to execute matrix sizes of

8192x8192. The execution duration of the FPGA execution is up to 20 times faster than the CPU

execution, however it does not match GPU performance. However, this device was not intended

for computational performance, but rather functional testing and experimentation. It is also worth

mentioning that as a SoC solution, the power consumption is greatly reduced, most likely leading

to equivalent or better performance than the two other architectures when compared in terms of

computational power per watt.

 A preliminary measurement of the SoC power consumption was executed during the

block 16 executions, in order to provide a stepping-stone for further work in this area. These

measurements are showcased below.

Figure 46: SoC Power Consumption

Investigation of Heterogeneous Computing 95

95

6.6 Conclusion

 It is shown in this chapter that FPGA based development of OpenCL applications is not

only possible, but also a viable solution for achieving computational speed-up for applications

that can benefit from heavy parallelisation. The application development when using the

OpenCL framework was shown to be both straightforward, and highly similar to applications

targeting other architectures in OpenCL. Based on the author’s previous experience with HDLs,

using the OpenCL framework for developing FPGA applications is much less time-consuming,

while also enabling for rapid and straightforward improvements to the developed application at

any point after development. The OpenCL framework also opens up the FPGA architecture to a

much larger pool of developers since it does not involve a tedious learning process for HDLs.

Investigation of Heterogeneous Computing 96

96

Chapter 7: Further Research

A continuation of this work could seek to include the newest introduced architecture in

high-performance computing, that of the many-core systems, like the Intel Xeon-Phi. Systems

such as this one, that include a high number of compute units could greatly benefit from the

OpenCL framework.

During this work, a number of applications were created for system benchmark across

multiple architectures, and although these applications were based on similar algorithms, they

existed as separate entities. While this allowed for a better understanding of how each

architecture functions, creating a single application, containing functionality for each entity type,

either individually or together, should be the next goal within this topic. Work toward this goal

could also determine the best approach to heterogeneous programming, creating a single kernel

code to be compiled at run-time or multiple binary files, one for each architecture type or sub-

type.

All applications used in this work were based on the OpenCL 1.2 version; however the

latest version is 2.2. It is expected that utilizing these newer standards would increase

performance while decreasing complexity and development time. However, due to the slow

adoption of these standards by manufacturers, OpenCL is fragmented across devices, similar to

the fragmentation of the Android OS platform. As such developing applications based on

standards that are not yet supported by all targeted architectures seems counterintuitive. Future

research could determine whether the benefits of using newer OpenCL standards outweigh the

cons.

Investigation of Heterogeneous Computing 97

97

The University of Huddersfield, like many other institutions like it, makes use of a

number of Digital Signal Processor devices as teaching tools. Since DSPs are advertised as

specialized accelerators that OpenCL can target, attempts could be made at determining the

computational benefits of integrating them as part of more robust heterogeneous systems.

The power measurements presented within this work are very limited in both scale and

complexity; however more in-depth research is needed to determine the actual speed-up of using

FPGA devices as computational accelerators alongside CPUs and GPUs. To this end, a much

more comprehensive test environment needs to be used, one that can accurately measure the

power usage of both the accelerator device and the complete system required to operate it.

 This work has shown that FPGA devices are able to match and surpass CPU devices,

while requiring a fraction of the power and storage space. Based on the findings of this work,

and the initial power measurements, a future study was planned, to determine the feasibility of

implementing FPGA devices as part of the High-Performance Computing environment. This

could be either as extensions to current hardware, by integrating PCI-E devices, or as separate

stand-alone resources in the form of a SoC FPGA resource pool.

Investigation of Heterogeneous Computing 98

98

Chapter 8: Summary and Conclusions

This work focused on investigating the efficiency of the OpenCL development

framework and environment in conjunction with heterogeneous systems, mainly, exploiting the

massively parallel architectures of GPUs, FPGAs or High-Throughput Systems. The work

covered the development of OpenCL applications aimed at benchmarking the performance of

accelerators within heterogeneous systems, portability across different devices and platforms,

and design methodologies. It was shown through several different implementations and test-

benches that through the OpenCL framework a large number of specialised resources can be

exploited to increase computational performance without significant development time trade-

offs.

Another outcome of the project has been the integration of OpenCL based functionality

within the High-Throughput Computing environment at the University of Huddersfield,

exploiting already existing hardware for General Purpose GPU computing. Exposing the

dormant resources available in the HTCondor pool offered not only increased system

performance but also facilitated the expansion of the user and application base by allowing for

the introduction of much more complex applications within the HTCondor pool. Resulting

evidence from this work has shown that the OpenCL platform offers a reliable solution for

targeting large, heterogeneous systems, such as those in HTCondor. Platform portability was

demonstrated through the seamless execution of the applications across the varied architectures

present in the resource pool. Platform specific optimisations are not omitted; their

implementation however is left to the judgement of the user/developer. The results of this

Investigation of Heterogeneous Computing 99

99

investigation lead to a peer-reviewed publication at the Emerging Technologies conference in

Barcelona. One of the main discussion points during the conference was software sustainability,

where interest was shown in both the OpenCL framework, for its platform portability, and the

HTCondor for its use as a pool manager for heterogeneous dedicated resources.

The investigation also focused on the FPGA based OpenCL SDK in order to determine

the effectiveness of OpenCL programming in reconfigurable computing, the portability of

OpenCL applications from CPU/GPU to FPGA, and the development effort involved in setting-

up FPGA based OpenCL applications. Although limited in size and scope, results have

nonetheless shown that the OpenCL framework has reached the level of maturity needed to allow

for the implementation of applications targeting FPGAs. Resulting output shows the potential of

FPGAs; however more in-depth research is required to determine the performance gain of the

system, not just from a speed-up perspective but also by investigating the power consumption,

acquirement cost, and sustainability.

Three research questions were posed in the introduction chapter; the aim of this work has

been to offer answers, both through literature research and experimental findings.

The first of these questions was related to the maturity of heterogeneous systems for use

in computational tasks. It is concluded, based on reviewed literature of current work done in the

field and demonstrated performance increase in specialised accelerators, that heterogeneous

computing has reached a sufficient maturity as to offer a promising environment for the

computational environment, and warrant a change traditional CPU based computing.

The second questions regarded the feasibility of integrating heterogeneous systems in

HPC resources through the OpenCL framework. Based on the successful implementation of the

Investigation of Heterogeneous Computing 100

100

HTCondor upgrade, the obtained benchmarking data, and the resulting publication, it is inferred

that the OpenCL framework is a viable solution for the integration of heterogeneous computing

resources in HPC clusters.

 The third research question, and topic, sought to determine the usability of the OpenCL

framework in conjunction with FPGA architectures for the development of computing

applications. It is evidenced, through both research into the functionality of the Altera OpenCL

SDK, and the benchmarking implementation on the DE1-SoC device that the OpenCL

heterogeneous platform can be successfully used to implement FPGA specific computational

applications. The FPGA device used in this work is shown to be faster than the investigated CPU

units, however not on par with the GPU devices. It is assumed that once power efficiency is

introduced as a component of the system benchmark, the performance gain associated with

FPGA usage will become more pertinent.

 Based on the research, results, findings, and outcomes of the above work, it is concluded

that all original aims and objectives have been achieved, and that a solid groundwork for future

research and development, especially on the topic of FPGA based computational acceleration,

has been established.

Investigation of Heterogeneous Computing 101

101

Chapter 9: References

Aldec. (n.d.). High-Level Synthesis and Verification. Retrieved 06 2016, from

https://www.aldec.com/images/content/products/cyberworkbench_hires_1660.jpg

Altera. (2007). Accelerating High-Performance Computing With FPGAs. Altera.

Altera. (2011). Implementing FPGA design with the OpenCL standard. Altera.

Altera. (2013). Radar Processing: FPGAs or GPUs? Altera.

Altera. (2015). Matrix Multiplication Design Example. Retrieved 05 2016, from

https://www.altera.com/support/support-resources/design-examples/design-

software/opencl/matrix-multiplication.html

Altera. (2016). Altera SDK for OpenCL programming guide. Retrieved 2016, from

https://www.altera.com/en_US/pdfs/literature/hb/opencl-

sdk/aocl_programming_guide.pdf

AMD. (2014). OpenCL 2.0 Device Enqueue. Retrieved 06 2016, from

http://developer.amd.com/community/blog/2014/11/17/opencl-2-0-device-enqueue/

AMD. (2014). OpenCL 2.0 Shared Virtual Memory. Retrieved 06 2016, from

http://developer.amd.com/community/blog/2014/10/24/opencl-2-shared-virtual-memory/

AMD. (2016). clFFT. Retrieved 02 2016, from github.com:

https://github.com/clMathLibraries/clFFT

Asano, S., Maruyama, T., & Yamaguchi, Y. (2009). Performance comparison of FPGA, GPU

and CPU in image processing. international conference on field programmable logic and

applications , (pp. 126-131).

Investigation of Heterogeneous Computing 102

102

Bodily, J., Nelson, B., Wei, Z., Lee, D., & Chase, J. (2010). A comparison study on

implementing optical flow and digital communications on FPGAs and GPUs. ACM

Transactions on Reconfigurable Technology and Systems (TRETS), 1-22.

Bodily, J., Nelson, B., Wei, Z., Lee, D., & Chase, J. (2010). A Comparison Study on

Implementing Optical Flow and Digital Communications on FPGAs and GPUs. ACM

Transactions on Reconfigurable Technology and Systems (TRETS), 1-22.

Brigham, E. O. (1974). The fast Fourier transform (Vol. 7). Englewood Cliffs: Prentice-Hall.

CMSoft. (n.d.). Retrieved 06 05, 2016, from

http://www.cmsoft.com.br/tutorialOpenCL/schemehostdevices.png

Dafinoiu, A. (2015). FPGA Based Implementation of Offset PPM. University of Huddersfield.

Dafinoiu, A., Higgins, J., & Holmes, V. (2016). Accelerating High-Throughput Computing

through OpenCL. Emerging Technologies Conference, (pp. 46-49). Barcelona.

Embedded.com. (n.d.). Retargeting embedded software stacks for many-core systems. Retrieved

06 2016, from

http://m.eet.com/media/1176760/rti%20man%20ycore%20fig%203%20500.jpg

Fang, J., Varbanescu, A. L., & Sips, H. (2011). A comprehensive performance comparison of

CUDA and OpenCL. 2011 International Conference on Parallel Processing , (pp. 216-

225).

Fykse, E. (2013). Performance Comparison of GPU, DSP and FPGA implementations of image

processing and computer vision algorithms in embedded systems. Trotenheim: NTNU.

Garland, M., & al., e. (2008). Parallel Computing Experiences with CUDA. IEEE Micro, 13-27.

Investigation of Heterogeneous Computing 103

103

Gubb, D. (2013). Implementation of a condor pool at the university of huddersfielod. University

of Huddersfield.

Intel. (n.d.). Retrieved 06 2016, from http://cdn.wccftech.com/wp-

content/uploads/2015/02/intel_10nm_panel2-Copy.png

Kalinov, A., Lastovetsky, A., & Robert, Y. (2005). Heterogeneous computing. . Parallel

Computing, 649-652.

Khronos Group. (2016). The first open standard intermediate language for parallel compute and

graphics. Retrieved 06 2016, from https://www.khronos.org/spir

Livny, M., Basney, J., Raman, R., & Tannenbaum, T. (1997). Mechanisms for high throughput

computing. SPEEDUP journal, 36-40.

Mazsola. (n.d.). Field Programmable Gate Arrays (FPGA). Retrieved 06 2016, from

http://mazsola.iit.uni-miskolc.hu/cae/gifs/fig1_6.gif

Microsoft. (n.d.). Timeout Detection and Recovery (TDR). Retrieved 06 2016, from

https://msdn.microsoft.com/en-us/library/windows/hardware/ff570087(v=vs.85).aspx

Owens, J. D. (2008). GPU Computing. Proceeding of the IEEE, 879-899.

Pellerin, D. T. (1997). VHDL made easy! Upper Saddle River: N.J: Prentice Hall.

Perez, B., Bosque, J., Stafford, E., & Beivide, R. (2016). Energy Efficiency Evaluation in

Heterogeneous. Emerging Technologies Conference, (pp. 50-53).

Schaller, R. R. (1997). Moore's law: past, present and future. IEEE spectrum, 52-59.

Stone, J. E., Gohara, D., & Shi, G. (2010). OpenCL: A parallel programming standard for

heterogeneous computing systems. Computing in science & engineering, 66-73.

Investigation of Heterogeneous Computing 104

104

Terasic. (2016, 08). DE1-SoC User Manual. Retrieved 08 2016, from

http://www.terasic.com.tw/cgi-

bin/page/archive_download.pl?Language=English&No=836&FID=3a3708b0790bb9c72

1f94909c5ac96d6

Tessier, R., Pocek, K., & DeHon, A. (2015). Reconfigurable computing architectures.

Proceedings of the IEEE, 332-354.

Top500. (2016, 06). June 2016. Retrieved 06 2016, from Top500.org:

https://www.top500.org/lists/2016/06/

Investigation of Heterogeneous Computing 105

105

Chapter 10: Appendix

List of files included on portable medium

1. OpenCL Device Detection C Code/Executable(improved version);

2. Matrix Multiplication Host Code/Executable (using external parameters);

3. Matrix Multiplication Host Code/Executable (using user prompted commands);

4. Matrix Multiplication Kernel Code;

5. FFT Client Source, as retrieved from (AMD, 2016);

6. FFT Client Compiled(with batch script);

7. FPGA Matrix Multiplication Host Code(with modifications);

8. FPGA Matrix Multiplication Kernel Code (Altera, 2015);

9. FPGA Matrix Multiplication Compiled Files.

N.B: The Matrix Multiplication kernel code (4) is also present with the executable in (2 & 3).

